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Applied Math. and Computational Math.
Individual (5 problems)

1. We consider the following convection-diffusion equation

(1) ut + aux = buxx, 0 ≤ x < 1

with an initial condition u(x, 0) = f(x) and periodic boundary condition, where a and
b > 0 are constants. The first order IMEX (implicit-explicit) time discretization and
second order central spatial discretization are used to give the following scheme:
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with a uniform mesh xj = j∆x with spatial mesh size ∆x and time step ∆t. Here un
j is

the numerical solution approximating the exact solution of (1) at x = xj and t = n∆t.
Prove that the scheme is L2 stable under the very mild time step restriction

(3) ∆t ≤ c

with a constant c which is independent of ∆x. Can you determine the dependency of
c on the two constants a and b in (1)?

2. Velocity-Verlet method.

(a) Recast the following Newtonian formula for the acceleration and potential force

q′′(t) = −∇V (q),

into a Hamiltonian system and show that the corresponding map on the phase
space is symplectic.

(b) Show that the velocity-Verlet (recovered many times: Delambre 1791, Størmer in
1907, Cowell & Crommelin 1909, Verlet 1960s) method
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is symplectic and is second order accurate.

Hint: Let u(t) = (p(t), q(t)) be a solution of the Hamiltonian system with initial data
u0 = (p0, q0) and we view the solution u(t) as a map map on the phase space ϕt :
Rd × Rd → Rd × Rd ϕt(u0) = u(t). We call the flow map is symplectic if its Jacobian
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satisfies Φt(u0)
TJΦt(u0) = J for any u0 ∈ Rd × Rd. Here J =
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0 I
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)
.

A scheme ϕn(u0), n = 1, 2 . . . , is symplectic if the map ϕn(u0) is symplectic.
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3. We begin with some definitions.
(1) A graph G is a pair G = (V, E) where V is a finite set, called the vertices of G,

and E is a subset of P2(V ) (i.e., a set E of (unordered) two-element subsets of V ),
called the edges of G. A simple graph G is a graph without loops (edge that connects a
vertex to itself) or multiple edges between any pair of vertices. The order of the graph
is |V |. We often put V = {v1, v2, · · · , vn} and E = {vivj| vi and vj are adjacent}.

(2) Two vertices x and y are adjacent if xy ∈ E. The neighborhood of a vertex x,
denoted by NG(x) or N(x), is the set of vertices that is adjacent to x. The degree
of a vertex x, denoted by dG(x) or d(x), is |N(x)| (i.e. the number of vertices that is
adjacent to x).

(3) A path is a collection of distinct vertices vi1vi2 · · · vik such that vijvij+1
∈ E for

all j, 1 ≤ j < k. vi1 and vik are the ends of the path. A Hamiltonian path P is a
path containing all vertices of the graph. A cycle is a closed path with vi1 = vik . A
Hamiltonian cycle is a cycle containing all vertices of the graph. A graph is called
Hamiltonian if it has a Hamiltonian cycle.

(4) A graph G is (Hamilton) connected, if for every pair of vertices there is a (Hamil-
tonian) path between them.

An example of a simple graph: V = {v1, v2, v3, v4} and E = {v1v2, v2v3, v3v4, v2v4}.
In this graph, the order of the graph is 4, N(v1) = {v2}, N(v4) = {v2, v3}, d(v3) = 2,
d(v2) = 3 and v1v2v4v3 is a Hamiltonian path with ends v1 and v3.

Let G be a simple graph of order n. Suppose that the degree sum of any pair of
nonadjacent vertices is at least n+1. Show that G is Hamilton-connected (i.e. between
any pair of vertices x and y, there is a Hamiltonian path in which x and y are the ends).

4. Define the Hermite polynomials as

(4) Hn(x) = (−1)n exp(
x2

2
)

dn

dxn
[exp(−x2

2
)], x ∈ (−∞, +∞), n = 0, 1, 2, · · · .

(a) Prove the weighted orthogonality of the Hermite polynomials:

(5) 〈Hn(x), Hm(x)〉ρ ,
∫ +∞

−∞
ρ(x)Hn(x)Hm(x)dx = n!

√
2πδn,m,

where ρ(x) = exp(−x2

2
).

(b) Prove the three recurrence formula:

(6) Hn+1(x) = xHn(x)− nHn−1(x), n ≥ 1,

and then show that for all n ≥ 1, Hn(x) and Hn−1(x) share no common roots.
(c) Use the recurrence formula and induction to prove the differential relation:

(7)
d

dx
Hn(x) = nHn−1(x), n ≥ 1,

and then prove that Hn is an eigenfunction of the following eigenvalue problem

(8) xu′(x)− u′′(x) = λu.

You need to find the eigenvalue λn corresponding to Hn(x).
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5. Take σi(A) to be the i-th singular value of the square matrix A ∈ Rn×n. Define the
nuclear norm of A to be

‖A‖∗ ≡
n∑

i=1

σi(A).

(1) Show that ‖A‖∗ = tr(
√

AT A).
(2) Show that ‖A‖∗ = max

XT X=I
tr(AX).

(3) Show that ‖A + B‖∗ ≤ ‖A‖∗ + ‖B‖∗
(4) Explain informally why minimizing ‖A− A0‖2

F + ‖A‖∗ over A for a fixed A0 ∈
Rn×n might yield a low-rank approximation of A0.

Notation: The trace of a matrix tr(A) is the sum
∑

i aii of its diagonal elements. We

define the square root of a symmetric positive semidefinite matrix M to be
√

M ≡
UD1/2UT , where D1/2 is the diagonal matrix containing (nonnegative) square roots of
the eigenvalues of M and U contains the eigenvectors of M = UDUT .


