
S.-T. Yau College Student Mathematics Contests 2020

Analysis and Differential Equations
Solve every problem.

Problem 1. Let χ be a real valued smooth function with compact support on R. We assume that∫
R1
χ(x)dx = 1.

For all ε > 0, we define
χε(x) =

1
ε
χ

( x
ε

)
.

Prove that for any given f ∈ L1(R), for almost every x ∈ R, we have

lim
ε→0
(χε ∗ f )(x) = f (x).

Solution: Let x0 ∈ R be a Lebesgue point of f , i.e., for t → 0, we have∫
|y | ≤t

| f (x0 + y) − f (x0)| dy = o(t),

it suffices to show that
lim
K→∞
(χε ∗ f )(x0) = f (x0).

We assume that supp(χ) ⊂ [−M,M]. We have

(χε ∗ f )(x0) − f (x0) =

∫
R
( f (x0 − y) − f (x0)) χε(y)dy

= ε−1
∫
|y | ≤M

( f (x0 − y) − f (x0)) χ(y)dy.

Thus,

|χε ∗ f )(x0) − f (x0)| ≤ ε
−1‖ χ‖L∞

∫
|y | ≤εM

| f (x0 − y) − f (x0)| dy

= ‖ χ‖L∞ε
−1o(εM)

= o(1).

This proves the statement.

Problem2. In last year’s YauCollege StudentMathematics Contests, four students Tintin, Haddock,
Dupont and Dupond made it to the last round of the oral exam in analysis. Professor Yau asked them
to compute the Fourier coefficients of the 2π-periodic function F (defined on R):

F : (0,2π) → R,

x 7→ F(x) = arctan
( x
2π

esin(x) + x2019(x − 2π) + 2019 sin(x)
)
.



Here were their solutions: for k , 0,

Tintin : F̂(k) =
cos(kπ)
|k |

1
2
+

a
|k |
+

b
|k |3

,

Haddock : F̂(k) =
c
k2 +

d
k4 +

e
k6 ,

Dupont : F̂(k) =
1
k
+

1
k2 +

f
k3 +

g

k5 ,

Dupond : F̂(k) =
2019
√
−1

k
+

hk
k
,

where a, b, c, d, e, f ,g, hk(k ∈ Z) were constants and
∑
k∈Z

|hk |2 < ∞.

Whose solutions were correct?

Solution: We remark that F is smooth on (0,2π). At 0, its right limit is 0; at 2π, its left limit is π
2 . In

particular, F is not continous on 2πZ.

Tintin was wrong: the function F is bounded on (0,2π) hence in L2. Parsevel’s identity implies F̂(k) ∈ `2(Z).
But according to Tintin, |F̂(k)| ∼ 1

|k |
1
2
. This is not in `2.

Haddock was wrong: otherwise, since his coefficients were absolutely summable, the function F should be a
continous function (since its Fourier series should be absolutely convergent).

Dupont was wrong: since F is a real valued function, we must have F̂(k) = F̂(−k). Dupont’s coefficients did
not satisfy this condition.

To show that Dupond was wrong, we do the following computations:

F̂(k) =
1

2π

∫ 2π

0
e−ikxF(x)dx

=
e−kπixΦ(x)

2πik

���2π
0
+

1
2πik

∫ 2π

0
e−ikxF ′(x)dx︸                ︷︷                ︸

∈`2 , since F′∈L2((0,2π))

=

√
−1

8k
+

h′
k

k
.

Now since h′
k
∈ `2, if Dupond was correct, it would imply that 2019

√
−1 −

√
−1
8 is square summable. This is

absurd.

Problem 3. Let B1 be the unit ball centered at the origin in R4 and u ∈ W1,2(B1) ∩ C∞(R4) be a
nonnegative real valued function so that

−4u ≤ u2,

where 4 =
4∑
i=1

∂2

∂x2
i

. Prove that, there exists a constant ε > 0, so that if ‖u‖L2(B1) ≤ ε, we have

‖∇u‖L2(B 1
2
) ≤ 10000‖u‖L2(B1),

where B 1
2
is the ball of radius 1

2 centered at the origin.



Solution: We can choose a smooth cut-off function η so that supp(η) ⊂ B1, η
��
B 1 2
≡ 1, η ≥ 0 and |∇η | ≤ 4.

We multiply the −4u ≤ u2 by η2u and integrate by parts. This leads to∫
B1

η2 |∇u|2 ≤
∫
B1

η2u3 + 2
∫
B1

ηu|∇η | |∇u|.

According to the Cauchy-Schwarz inequality, we have∫
B1

η2 |∇u|2 ≤
∫
B1

η2u3 + 2
∫
B1

|∇η |2 |u|2 +
1
2

∫
B1

η2 |∇u|2.

Hence, ∫
B1

η2 |∇u|2 ≤ 2
∫
B1

η2u3 + 4
∫
B1

|∇η |2 |u|2

≤ 2
∫
B1

η2u3 + 64
∫
B1

|u|2.

On the other hand, we can use four dimension Sobolev inequality to derive∫
B1

η2u3 ≤ ‖u‖L2(B1)

(∫
B1

(ηu)4
) 1

2

≤ ‖u‖L2(B1) × C4

∫
B1

|∇(ηu)|2,

where C4 is the constant coming from the Sobolev inequality. Since ‖u‖L2(B1) ≤ ε, we can proceed as follows∫
B1

η2u3 ≤ C4ε

∫
B1

|∇(ηu)|2

≤ 2C4ε

(∫
B1

|∇η |2 |u|2 +
∫
B1

|∇η |2 |u|2
)

≤ 32C4ε

∫
B1

|u|2 + 2C4ε

∫
B1

|u|2.

Putting all the inequalities together, we obtain∫
B1

η2 |∇u|2 ≤ 2
∫
B1

η2u3 + 4
∫
B1

|∇η |2 |u|2

≤ 64C4ε

∫
B1

|u|2 + 4C4ε

∫
B1

|u|2 + 64
∫
B1

|u|2.

If we take ε < 1
128C4

, we have ∫
B1

η2 |∇u|2 ≤
1
2

∫
B1

|u|2 + (64 +
1
32
)

∫
B1

|u|2.

This leads to the final estimate: ∫
B1

η2 |∇u|2 ≤ (128 +
1
16
)

∫
B1

|u|2.

Problem 4. Let f and g be two holomorphic functions defined on the entire complex plane C so
that for all z ∈ C, we have

f (z)2020 + g(z)2020 = 1.

Prove that f and g are constants.



Solution: We consider the following holomorphic map

ϕ : C→ P3(C), z 7→ ( f (z) : g(z) : 1) ,

where (z1 : z2 : z3) is the homogenous coordinates on P3(C). Let C be the curve defined by the homogenous
equation

C =
{
(z1 : z2 : z3)

�� z2020
1 + z2020

2 = z2020
3

}
⊂ P3(C).

It is obviously a smooth curve (by the Jacobian criterion). The maps ϕ factor through C , i.e., we have a
holomorphic map

ϕ : C→ C .

On the other hand, the genus g(C ) of the plance curve C can be computed through the genus formula

g(C ) =
1
2
(2020 − 1)(2020 − 2) ≥ 2.

Therefore, according to the uniformization theorem, the universal covering of C must be the Poincaré disk D.
Hence, we can lift ϕ to a holomorphic map

ϕ̂ : C→ D,
i.e., we have the following commutative diagram:

D

C C

π
ϕ̂

ϕ

In particular, ϕ̂ is a bounded entire function, hence a constant map by Liouville’s theorem. Therefore, ϕ is
also a constant map.

Problem 5. We consider the following ordinary differential equation:{
x ′′(t) + x(t) + x(t)3 = 0,
(x(0), x ′(0)) = (x0,0),

where x(t) takes values in R. Prove that for all x0 ∈ R, the solution of the above system is periodic.

Solution: The key is to observe that

E(t) =
1
2
ξ(t)2 +

1
2

x(t)2 +
1
4

x(t)4

is conserved, where ξ(t) = x ′(t). Therefore, on the phase plane (x, ξ), the solution lies on

1
2
ξ2 +

1
2

x2 +
1
4

x4 =
1
2

x2
0 +

1
4

x4
0 .

The curve is bounded. Hence, x(t) is bounded and the solution to the equation is defined on the whole of
t ∈ R. To show that x(t) is periodic: when x ′(t0) = 0, x(t0) is either the maximum or the minimum of x(t)
for all t ∈ R (using the fact that E(t) is conserved). Therefore, it suffices to show that x(t) will reach its local
maximum and local minimum for some later time. If not, then x(t) must be monotone which is impossible
since this would pose a sign condition on ξ ′(t).

Problem 6. Let α ∈ R and ak ∈ C with |ak | < 1, where k = 1,2, . . . ,n. We consider the following
holomorphic map

f :C −
{
(a1)

−1, . . . , (an)−1} → C,
z 7→ f (z) = e2

√
−1παz ·

z − a1
1 − a1z

· · ·
z − an

1 − anz
.



Let S1 be the unit circle in C, i.e.,

S1 =
{
z ∈ C

�� |z | = 1
}
.

Prove that f maps S1 to itself and f preserves the surface measure (i.e., dθ in terms of standard
polar coordiantes of R2) of S1.

Solution: It suffices to show that ∫
S1
ϕdθ =

∫
S1
ϕ ◦ f dθ, ∀ϕ ∈ C0(S1).

Let ϕ be the harmonic extension of ϕ to the unique disk

D =
{
z ∈ C

�� |z | ≤ 1
}
,

i.e., ϕ is the unique solution of the following Dirichlet problem:{
−4ϕ = 0, in D,
ϕ
��
S1 = ϕ, on S1.

Since f is holomophic and f preserves D, ϕ ◦ f is still a harmonic function in D and it is the harmonic
extension of ϕ ◦ f .

We observe that f maps 0 to 0. Therefore, by the mean value property, we have∫
S1
ϕdθ = ϕ(0) = ϕ ◦ f (0) =

∫
S1
ϕ ◦ f dθ.

This completes the proof.


