S.-T. Yau College Student Mathematics Contests 2022

Geometry and Topology
Solve every problem.
Problem 1. The topological space X is obtained by gluing two tetrahedra as illustrated by the figure. There

is a unique way to glue the faces of one tetrahedron to the other so that the arrows are matched. The resulting
complex has 2 tetrahedra, 4 triangles, 2 edges and 1 vertex.

Show that X can not have the homotopy type of a compact manifold without boundary.

Solution: One can calculate the (Z-coefficient) simplicial homology to see that Hy(X) = Z, H;(X) = Z?, Hy,(X) = Z/2,
H;(X) = Z. This does not satisfy Poincaré duality, hence the X can not have the homotopy type of a compact manifold
without boundary. Or one can notice that X has Euler characteristic 1, but a closed odd-dimensional manifold has Euler
characteristic 0.

Problem 2. Suppose (M, h) is a closed (i.e., compact without boundary) Riemannian manifold, and / is a metric
on M with sec(h) < —1, where sec(h) is the sectional curvature. Suppose X is a closed minimal surface with genus
g in (M, h). Show that

Area(X) < 4zn(g—1).

Remark: A minimal surface is an immersed surface with constant mean curvature 0.

Solution: For any surface ¥ in a Riemannian manifold (M, h), let x € Z, and {e;, e,, €3, ey, ..., €, } be a local orthonormal
frame of M at x where e; and e, are tangent to X and e, ..., e, are normal to Z. The Gauss equation shows that

1(x) =K1; + (A11,A) — (A1, A1),
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Here, K;, is the sectional curvature of T, X C TM. Integrate this identity over X and use the Gauss-Bonnet theorem; we get
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Equivalently,
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where g is the genus of X. ¥ being minimal implies that H = 0, and sec(h) < —1 implies that K;, < —1. Se we get

Area(X) =4n(g—1) + I
r

Area(X) < 47n(g—1).



Problem 3. For any topological space X, the n-th symmetric product of X is the quotient of the Cartesian product
(X)" by the action of the symmetric group S,,, which permutes the factors in (X)". This space is denoted by
SP™(X), and the topology is the natural quotient topology induced from (X)".

Show that SP"(CP') is homeomorphic to CP". Here CP! and CP" are equipped with the manifold topology.

Solution: CP” can be interpreted as the space of homogeneous polynomials in two variables of degree n modulo multipli-
cation by a non-zero complex constant. Each polynomial is determined up to a constant complex number by its n complex
roots on CP!. On the other hand, SP”(CP!) is exactly the n-tuples of unordered points in CP!. This induces a bijection
F : SP"(CP!) - CP".

It remains to show F and F~! are both continuous. One direction is relatively easy: because the coefficients of the poly-
nomials are determined by the roots via Vieta’s formulas, and Vieta’s formulas are polynomials, F is continuous. For the
other direction, notice that SP"(CP?!) is compact (because it is the quotient of a compact space), CP" is Hausdorff, and F is
a continuous bijection, so F~! is also a continuous bijection.

Problem 4. Let M be a complete noncompact Riemannian manifold. M is said to have the geodesic loops to
infinity property if for any [«] € 7;(M) and any compact subset K C M, there is a geodesic loop § € M\K, such
that 8 is homotopic to a.

Show that if a complete noncompact Riemannian manifold M does not have the geodesic loops to infinity property,
then there is a line in the universal cover M.

Remark: A line is a geodesic y : (—oo,00) — M such that dist (y(s), y(t)) = |s — t|; a geodesic loop is a curve
B :[0,1] —» M thatis a geodesic and (0) = B(1).

Solution: Suppose [a] € 7;(M) is a loop that M has no geodesic loops to infinity with respect to «, K. Suppose « is based
at xy. Let K be a compact subset K C Bp(xy) C M. Let us choose x; € M with dist(x,, x;) > R. Minimize curves passing
through x; in the homotopy class [«] to get a geodesic loop y; that is based at x;. Because M has no geodesic loops to infinity
with respect to «, y; intersects with K; let y; € K ny;.

Now we go to the universal cover M, and consider the lift #; of y;, such that 7; connects X; and [«]%; in the universal cover.
We assume J; is the lift of y; lying on 7;. Let us estimate the distance d; between J; and [«]x;. Because ; is a minimizing
geodesic segment, we have dist(J;, [«]X;) equals to the length of the geodesic line segment ; from J; to [«]%;. This is exactly
the length of the part of the geodesic loop that connects y; and x;. By the triangle inequality, d; > m; — R. Similarly, the
distance e; between y; and x; satisfies the bound e; > m; — R.

Therefore, there is a geodesic starting from j; that extends to both directions with length longer than m; — R. Notice that
y; € K, so for any i, we can choose ; in some fixed compact domain of M. Then as m; — oo, we can pass to a subsequence
of y; to get a limit y, and a line passing through this point.

Problem 5. A topological space X is called an H-space if there existe € Xand u : XXX — Xsuchthatu(e,e) =e
and the maps x — u(e, x) and x — u(x, e) are both homotopic to the identity map.

(a) Show that the fundamental group of an H-space is Abelian.

(b) Show that the sphere S2°?? is not an H-space.
Historic Remark: “H”was suggested by Jean-Pierre Serre in recognition of the contributions in Topology by Heinz
Hopf.

Solution:

(a) Let[f] and [g] be two elements in the fundamental group of X. We may assume f : [0,1] - Xand g : [0,1] - X
are both continuous maps with f(0) = f(1) = g(0) = g(1) =e.



(b)

Now we define amap F : [0,1] X [0,1] — X by F(x,y) = u(f(x),g(y)). Then F(-,0) is homotopic to f and F(0, ) is
homotopic to g. It is clear that

F((1 —t)2s,t - 25) s €[0,1],

h(s,t)={ F(t-2s—1H,1-0-26-1) seli1]

is a homotopy from a curve representing [f] - [g] to a curve representing [g] - [f]. Therefore [f] - [g] = [g] - [f], and
hence 7,(X) is Abelian.

We will show that $2" is not a H-space. In the following we consider R-coefficient cohomology. Suppose S¥ is an
H-space, then the map u induces

L HA(SY) — H*(S%) ® H*(S),
and for a generator x € H*(S%), 1*(x) = 1®x+x®1 (to see this, one can consider the composition X & X xX et X,
where the inclusion is a — (a,e) or a = (e, a)).

The universality of the cup product gives
Wxux)=01x+x®@DHU(1®x+x®1).

The left hand side is clearly 0, and the right hand side is (1 + (-1)*")x ® x. Here, notice that (a @ b) U (c ® d) =
(=1)!dee®)l1dee(©)l(q y ¢) @ (b U d). Thus, S* being an H-space implies that k is odd.

Remark: In fact, Adams’ Hopf invariant one theorem shows that among all the spheres, only S°,S', 53,57 are H-
spaces.

Problem 6. A hypersurface = C R®*! is called a shrinker if it satisfies the equation

H(x) = X(x, n).

Here H is the mean curvature, which is —(tr 4, ﬁ) where A is the second fundamental form, x is the position vector,
and 7 is outer unit normal vector.

2n 2n

(a) Show that S"(1/2n), the sphere with radius v/ 2n, is a shrinker.
(b) Show that any compact shrinker without boundary must intersect with S"(\/2n).
Solution:
(a) One can calculate that for S"(y/2n), A = —Lgﬁ, hence H = ——. Also, x = +\/2nii, so S™(\/2n) satisfies the

(b)

shrinker’s equation.

Suppose X is a closed shrinker. On any hypersurface, Vsx = I, where I is the (n + 1) X (n + 1) matrix that is the
identity on T,.Z ® T, X and vanishes elsewhere, Ay x = —Hi, so

As|x|?> = 2(Vgx, Vsx) + 2(Asx, x) = 2n — 2(x, n)2.

Consider x,,,, such that |x|? attains the maximum, and x,,;,, such that |x|? attains the minimum. First let us consider
Xmin # 0. Differentiating |x|? shows that x,,,,, and x,,;,, are normal to the tangent hyperplane, and (x., n)? = |x.|? for
- = max or - = min. Then As|x|?> < 0 at x,,,,, hence 2n — (x,,,,, 1) < 0. This implies that |x,,,,|> > 2n. Similarly,
As|x|?> > 0at x,,;,, and |x,;,|*> < 2n. Finally, if x,;, = 0, then it is clear |x,,;,|> < 2n. Therefore = must intersect

sn(\/2n).
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