S.-T. Yau College Student Mathematics Contests 2020

Computational and Applied Mathematics

Solve every problem.

Problem 1. Let f € CK*![-1,1] and [—1, 1] be partitioned into subintervals I; = [(j = 1)h, jh] of
width 4. Assume p is a polynomial of degree k which approximates f in I; with

max |p;(x) — f(x)| < Coh**!,
xEIj

where Cj is a constant independent of j. Show that there exists an another constant C, independent
of j, such that

max |pj(x) - f(x)| < Ch*1,

xEIjil

(as long as I;.1 C [-1,1], of course).

Solution: Pick points 0 < xp < x; < --- < x; < 1, and let

_ X — X
Li(x) = 1_[ o

be the /-th Lagrange polynomial. Let
k

A= max |L; .
;XE[_1§2]| i)

On I; we use rescaled versions with x;; = (j — 1) + hx;, and
X — Xj1
Lt = [ 2
et it =
Note that A is unchanged with
A= L;i(x)]|.
2.2 i)

Let f; be the interpolating polynomial on /;

k
fi(x) = Z F(xji)Lji(x),
i—0

and note that also
pj(x) = ZP(in)Lji(x)~
i
Then for x € I},

Ipi(x) = ()| < |pj(x) = £;(x)] + | f;(x) = f(x))]

k
= D1 00) = P Ljix)] + | Re f ()]
i=0
LF&D) ‘
< max |(x) = pi (0] A+ (o5 max g(x - x51)
o, I .
< CoAF*T 4 h max|(2)"*1]

— Chk+1



2k+l ||f(k+l)||

C = CoA
oA F )

Problem 2. Consider the iteration

Xn
et = (f(xn) A >) i)

for finding the roots of a two times continuous differentiable function f(x). Assuming the method
converges to a simple root x*, what is the rate of convergence? Justify your answer.

Solution: The iteration may be rewritten as

Xpsl = [xnf(xn) - xnf(XO)] - [xnf(xn) - xOf(xn)] — xOf(xn) - an(X())
" F(xn) = f(x0) f(xn) = fxo)

Thus
o _ %0f () —xnf(x0) (%0 = X7)f(xn) — (3 — x*)f(xo)'

Xn+l — X = f(xn) _ f(xO) r = f(xn) - f(XO)

Taylor’s Theorem asserts that there is &, between x,, and x* such that

0= f(X*) = f(xn) + f,(‘fn)(x* - xn) = f(xn) = f,(‘fn)(xn - x*)~

This implies
_ (o =)&) = fxo)
J(xn) = f(x0)

(xp — x¥).

Xn+l — x*

Evaluating the limit as n — o0, &, — x* and

(xo = x)f"(€n) = f(x0) | _ | (0 = X)) Nimpeo f7(€0) = f(x0)
Jf(x*) = f(x0) 0 - f(x0) '

Applying Taylor’s expression one more time, we know there is 7 between x* and x¢ such that

Xn+l — X
Xp — X*

"
= lim

n—oo

lim

n—oo

F) = () + /()0 —x%) + L 2"7)<x0 P
So ”
P = x7) = f0) = =L g =0
Therefore )
. Xp+l — X | n a2
P e R FYTEoS | KR

Note the right hand side is dependent only upon x* and xy. Since we know x, — x, this shows the rate of
convergence is linear.

Problem 3. Suppose A is an m X m matrix with a complete set of orthonormal eigenvectors
q1.. . .,qm and corresponding eigenvalues Ai,. . ., A,,. Assume that [4;| > |A2| > |43] and A; > 444
for j = 3,...,m. Consider the power method vk = Av(k‘l)//ll, with v = a qp + -+ AmQm
where @ and @, are both nonzero. Show that the sequence {V(k)},‘j’:0 converges linearly to a;q; with
asymptotic constant C = [1/;].

Solution: Matrix A has following eigen-decomposition

A
P .
A=[q19. . qn] . TR I

Am



thus

k
4
/lk
k 2 -1
A = [q19q23"'3qm] [ql’qu"-sqm] .
A
The power method reduces to
W0 kY
/lk
1
a
¥ . ffz’
4 -1 ar
= [q1.q2.- - .. Q] [a1.42.- - Gm] [a1.G2.- - Gm] | 7
k O
/lm ?9
m A k
=a1q; + Z (/l_j) @;q;,
— 1
Jj=2
from this we deduce v¢) — a1qq as k — oo, since |4;/A1| < 1forj=2,...,m.

To show the convergencee is linear with asymptotic constant C = |1, /1| we need to verify the limit

(k+1) (k+1)
e v -« A
im u = li w =2 (here || - || denotes the Ly-norm).
koo [le®]] koo VO —aqqi]] |4
K
Note that e®) = 3™ 4 a;q;, using the orthonormality of the eigenvectors we have
=2\ 7, j4j g y g
m 2%k 2% m 2%k
Aj i Aj
)2 J 2 _ |42 2 J 2
e = = la;|*=|= a|” + = 7],
11 = D15 gl = || (el + D 13| lal
J=2 J=3
similarly
2 2(k+1) m [2(k+1)
[l = |22 o+ D0 5E e
A =l
Thus
1
2(k+1) 2(k+1) 2
P! 2 4 2
||e<k+l)|| ,TT (|a’2| +Z;n:3 i aj| )
ko [[e®]] K 2% 2%
—00 e —00 P A
& (|a2|2+zj"13|7;( |aj|2)
_ 2| lea] .
== — (' we have used | 12| > 23] > |4;| for j > 3)
A1 | |z
A
=2 (since ap #0).
A

Problem 4. For the initial value problem y’ = f(¢,y), y(0) = yo on the interval [0, T], consider
the implicit two-step method

4 1 2h
Yn+l = §)/n - gyn—l + ?f(tn+1’yn+l),

y1 = yo + hf(ti,y0),

where £ is the step size and ¢, = nh.



(a) What is the order of the accuracy of the scheme?
(b) Check the stability of the scheme by analyzing the stability polynomial?

(c) Find the stability region of the scheme.
Solution: (a) Let y(¢) be the exact solution, then the truncation error of form

4 1 2h
Wty = y(tne1) = gy(fn) - gy(tn—l) + ?f(tn+l,y(tn+l))
can be estimated by using Taylor expansion to every term involved:

1 1
Y(tns1) = Yu + hy), + Sh2y) + =k + O(hY),

2 6 "
1 ] 1 7’ ] 14 ] 1244
- gyn—l = —gyn + ghyn - ghzyn + 1_8h3yn + 0(h4)’
2h 2h , 2., 2 , 1 .
?f(ln+lsyn+1) =3 Vne1 = §hyn + ghz)’n + §h3yn +O0(h*).

Hence

1 7
Y + hyh + =h2y! + Rh3y"’ +O(h*)

2 n n

’ 1 144 1 444
htys1 = |yn + hy,, + Ehz}’n + 5h3y" + O(h4)] -

2
= —§h3y,',” +O(hh).

The method has order of accuracy 2.

(b) Apply the method to the case f = 0, then

4 +1 =0
Yn+1 3yn 3yn—l =Y,

when for ansatz of form y,, = y" gives the stability polynomial

4 1
2

_2 42z,
Y T377T3

which has nonzero roots y = 1, % Since |y| < 1 and y = 1 as a single root, the method is stable.

(c) Consider the stiff problem y” = 1y. The method becomes

4 1 2
il = 5Vn — zYn-1 + shAdyn,1,
Yn+1 3)7 3y 1 3 Yn+1

which has stability polynomial
(3-2hA)y* -4y +1=0.

So the stability region is given by

4+ /16 — 4(3 - 2h1) 3

2(3 = 2hA) ’
ie.,
2+ V1 -2hA
R=<h | 1p.
{/IEC Yy < }




Problem 5. Suppose the difference scheme u*! = Bu" is stable, and C(At) is a bounded family of
operators. Show that the scheme

u™ = (B + AtC(AD)u"
is stable.

Solution: Suppose ||B¥|| < K| for 0 < k < n and ||C(A?t)|| < K,. It suffices to show (B + AtC(Ar))" is

bounded for nAt < T. This will consist of 2" terms, of which ;l terms involve j factors A¢C interspersed

in n — j factors B; the latter can occur in at most j + 1 sequences of consecutive factors, the norm of each

sequence being bounded by K, and hence the norm of each such term by Kg K{ *!. Thus overall we obtain
the bound

n

1B + Acc(an)"|| < ) ( ;l )K{“ (AtKyY
Jj=0

= K| (1 + AtKle)n
S K] enAlKle

which is bounded for nAr < T.

Problem 6. Let A be an m X m nonsingular matrix. Suppose inf, cp» ||pa(A)|] = ||p*(A)]| > O
where P" denotes the set of all degree-n monic polynomials:

P" = {p : pis a polynomial of degree n, p(z) = z" +---}.
Prove that p* is unique.

Solution: We prove by contradiction. Assuming there are two p; fori = 1,2 as minimizers, then p = (p;+p2)/2
shares the same 2-norm,

el = lp2ll = llpll = o7,
where o is the largest singular value. Let the SVD of p be

p(A) = Udiag(oy, . ..,04)V".
Suppose o is J—fold, with left and right singular vectors uy,...,uy and vy,. .., vy, respectively.

By convexity of the 2-norm, we have

1
o1 = llp(Awsll < 5 (Ip1 (A1l + lIp2(A)w;ll) < o,

which implies that

lp1(A)w; Il = lIp2(A)vjll = oy
and

(pr=p2)v; =0,1<j<J.

Similarly we can show that (p] — p3)u; = 0.
Construct g € P" using p; — p» so that gv; = 0 and g"u; = 0. For a fixed € € (0, 1), define
pe =(1—¢€)p+eqe P

Hence
pepevi = (1 —e)pip(Ayvj = (1 - €)oipeuj = (1 - e)za'lzvj.



This says that p has right singular vector vy, ..., v; corresponding to the singular value (1 — €)o.

There are two cases to consider:

(1) |lpell = (1 = €)o1 < o is not the largest singular value, we see a contradiction.

(2) None of vy,...,vy correspond to the largest singular value of p.. Using this fact and

p(A) = UXV",
we have
Ipe(AIl = [Ipe(AVI = lIpe(A)[vsst,- - -, valll
= (1 = e)p(A)[vist,- . val + €q(A)[vyst,...,valll

< (L= lus+1s- - - upldiag(osii, . . ., o)l + €llgA) vt ... valll
<(1-€oyi +e€llgA)viet,...,valll @ 0y41 <0y =0

for € small. This again leads to a contradiction. The uniqueness proof is complete.



