S.-T. Yau College Student Mathematics Contests 2018

Analysis and Differential Equations
Team
Please solve the following 5 problems.

1. Suppose {f,}>2, € L*(R) is a sequence that converges to 0 in the L? norm .
Prove that there exists a subsequence {f,, } such that f,,, — 0 almost everywhere.

2. Let f(€) = [ e ™ f(x)dx be the Fourier transform on Schwartz function f € S(R).
Suppose f € S(R) satisfies f(2rn) = 0 and f(n) = 0 for all integers n. Prove that
f=0.

3. If f is integrable on R%, then

lm /B )y = f(x),

m(B)—0,z€B m(B)
for a.e. x, B is an open ball centered at x.

4. Let C[0,1] = {f 0, 1] — R| f is continuous} be the space of continuous function

on [0,1]. Let p(f,9) fo |f(z (x)|dx be a metric on [0, 1].
Show that (C[0, 1], p) is not a Complete metric vector space.
Construct a complete metric vector space (W, p) such that i : (C[0, 1], p) — (W, p)

is an isometric embedding such that plcp1 = p, C[0,1] = W.

5. Let 2 be a simply connected domain in C. Consider a point z5 € {2 and solve the
Dirichlet problem in © with the boundary values log | — zo|. The solution is denoted by
G(z, z0) and let g(z, z9) = G(z, 20) —log |z — z0|. Let w = f(2) : Q@ — Dy = {z||z2| < 1}
be the one to one surjective conformal mapping with f(zy) = 0. Show that

1) g(z,20) = —log | f ()]

2) g(z,20) = g(20,2). (Hint: Let g(z,21) = g1,9(2, 22) = go, calculate the integral
g1 * dga — go * dgy over the cycle 0€2 — ¢; — o, where ¢y, ¢y are small circles around
21, 2, du = uzdr + uydy, xdu = —u,dx + u,dy.)



S.-T. Yau College Student Mathematics Contests 2018

Probability and Statistics
Team (5 problems)

Problem 1. Let X;, 1 < i < N be ii.d. random variables. Here X; is uniformly
distributed on [0, 1]. We reorder them as

X, <Xo<--- Xy

a) Let N=2m —1,and Y = )~(m, please find the A and B such that
Y —A
NB
has nontrivial distribution, and please find this distribution.
b) Let N =2m, and Y = X, — X,n_1, please find the A and B such that
Y —A
NB
has nontrivial distribution, and please find this distribution.

Problem 2. Let X = (Zy)V, ie., X = (X1, Xp--, Xn---), X; € (0,1). Tt can be
considered as countable lightbulbs. 0 means off, 1 means on. We start with X, =
0. Keep generating independent geometric random variables, whose distribution are
geom(1/2). Denote them as K;, Ks---. Now let X,,, (for m > 1) be as follows

(X = Xno1), = Lk = Koy), Zs
i.e, in the m — th turn, we only change the status of the K,,—th light bulb. Then what
is the probability of all lights being off again, i.e.,

P@Em>1, X, =0)

Problem 3. Let z{,29,..., 2, be d-dimensional vectors of real numbers with n suffi-
ciently large but the exact value is not of importance.

A function of y is defined to be

() = sup{> logpi: Y piwi =5 Y pi=1,p1>0,...,pp >0}
=1 =1 =1

on the space of the interior of the convex hull of z1,..., x,.
(a) Show that this is a concave function of y on the convex hull.

(b) Let = n~t 3" x;. Let a be a vector of length d. Prove that ((z + ta) is a
decreasing function of ¢ when ¢ > 0.



Problem 4. Consider the histogram estimator, defined as follows. We observe iid
random variables X1, ..., X,,, taking values in [0, 1] according to the distribution with
PDF f (assuming it is sufficiently smooth). Define bins

1 1 2 -1
Blz|:O7_)7BQI|:_7_>7"'7Bm:|:m 71:|
m m m m

Let h = 1/m, v; be the number of observations in bin Bj;, and define p; = v;/n and
p;j = [ f(u)du. Then the histogram estimator of the density f is

1I{z € B}

:nl’@>

fn(x) =

1

J

1. Find the (exact) mean and variance of f,,(z).
2. Explain why increasing the number of bins decreases the bias of f,(z).

3. If our goal is to minimize the mean-squared error

vsE = | [ () - fu(o) s

please give some advice on how to choose m.

Problem 5. Let X; ~ N(6;,1) independently for ¢ = 1,... k. We are interested in
estimating 7 = 6% + - - - + 02 given observations X7, ..., Xj.

1. A possible estimator of 7 is 7 = Zle X? — k. Show that it is unbiased and
compute its sampling variance.

2. Now assume the proper prior 6; ~ N (0, A), independently for i = 1,...,k and
a given A > 0. Since A is unknown, please provide an estimator A of A and
also derive the empirical Bayes estimator of 7, denoted as 7p. (Hint: 75 = E(7 |
X1y, Xi, A)).

3. How do you compare the two estimators, 7 and 757
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Geometry and Topology

Team

Please solve 5 out of the following 6 problems.

1. Let X be (S? x S?) Ug2 D3, where we attach the 3-disk via the map

S? — §%v §?
which crushes a great circle connecting the north and south poles. Compute the ho-
mology groups of X.

2. (a) Let A be a single circle in R®. Compute the fundamental group m (R* — A).
(b) Let A and B be disjoint circles in R3, supported in the upper and lower half
space, respectively. Compute 7;(R* — (AU B)).

3. Consider the differential 1-form w = xdy — ydx + dz in R? with coordinates (z,y, z).
Prove that fw is not closed for any nowhere zero function f : R® — R.

4. Show that

is a differentiable manifold.

5. Let M be a closed surface in R®. Prove that
| Kldo = tn(1+.),
M

where K, g and do is the Gaussian curvature, the genus and the area element of M,
respectively.

6. Let M be an n-dimensional compact and simply connnected Riemannian manifold.
If the sectional curvature Kjs of M satisfies
1
- < Ky <1,
1 M S

then M is homeomorphic to S™.
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Algebra and Number Theory

Team
This test has 5 problems and is worth 100 points. Carefully justify your answers.

Problem 1 (20 points). Recall that a ring F is said to be local if for every u € E,
at least one of the elements u and 1 — w is invertible. Let R be a ring and let M be
an R-module.

(a) (8 points) Show that if Endg(M) is a local ring, then M is indecomposable.

(b) (12 points) Assume M indecomposable and of finite length. Prove the Fitting
lemma: Every endomorphism u of M is either invertible or nilpotent. Deduce
that Endg(M) is a local ring.

Problem 2 (20 points).

(a) (6 points) Let n > 2 be an integer. Show that there exists an integer m with
1 < m < n — 1 such that the binomial coefficient ( ) satisfies (;;) > 2" /n.

n
m

(b) (6 points) Let 0 < m < n be integers with n > 1. Show that for every prime

number p,
n
()

Here v, is the p-adic valuation: v,(p®b) = a for integers b prime to p and a > 0.

(c) (8 points) Let n > 2 be an integer and let 7(n) denote the number of prime
numbers p < n. Deduce the following inequality of Chebyshev:

m(n) > —— — 1.

~ logyn

Problem 3 (20 points). Let n > 1 be an integer and let ®,(X) € Q[X] denote the
n-th cyclotomic polynomial, i.e.

®,(X) = l}(X - ),

where £ runs through primitive n-th roots of unity in C. Recall that X" — 1 =
[Tgn ®4(X) and @,(X) belongs to Z[X]. Let p be a prime number such that p { n.
Denote by ®,, the residue class of ®,, in F,[X]. Prove the following statements:

(a) (8 points) The roots of ®, = 0 in the algebraic closure F, of F, are exactly
the primitive n-th roots of 1 in F,,.

(b) (12 points) ®,, is irreducible in F,[X] if and only if (Z/nZ)* is a cyclic group
generated by the class of p.
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Problem 4 (20 points). Let G be a finite group. Let V be a finite-dimensional
complex representation of G and let xy: V' — C be the associated character.

(a) (8 points) Show that there exists a subfield L C C containing the image of x
such that L/Q is a finite Galois extension. Show moreover that

Bix)= II IIex(9)

c€Gal(L/Q) geG
belongs to Z.

(b) (12 points) Suppose that x is irreducible and dim(V') > 2. Show that there
exists g € G with x(g) = 0. (Hint. One may apply the inequality of arithmetic
and geometric means to |B(x)[*.)

Problem 5 (20 points). Let F' be a field, V' an F-vector space of dimension d and
W C V a subspace. Let f: W — V be an F-linear map. Assume that the only
subspace W/ C W such that f(W’) C W' is {0}.

(a) (6 points) Let v € V' be a non-zero vector. Show that there exists a unique
integer k(v) > 0 such that v, f(v), f2(v),..., fF@=(v) € W but f*®)(v) ¢ W.
Show moreover that v, f(v), ..., f¥*)(v) are linearly independent over F.

(b) (14 points) Prove that given Aq,..., A\ € F', there exists an F-linear extension
of f to f: V — V such that the characteristic polynomial of f is [TL (A —\;).
(Hint. You may first treat the special case V = @Y F fi(v). For the general
case, consider the subset W,, C V of vectors v € V' with k(v) > n or v =0.)

Page 2 of 2
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Applied Math. and Computational Math.
Team (5 problems)

1. Let H be a bipartite graph with the bipartition V' =V} U V4, where |Vi| = |Va| = n.
We say that H satisfies the (p, ¢)-condition if (i) for all subsets I C V} of cardinality at
most p, the inequality |I| < |N(I)| holds, and (ii) for all subsets J C V5 of cardinality
at most ¢, the inequality |J| < |N(J)| holds. Note that the (n,0)-condition is Hall’s
original condition in his marriage theorem.

Prove that if H satisfies the (p,q)-condition with n < p + ¢, then H contains a
matching of size n.

2. Let C,, be the n dimensional hypercube, i.e., the graph whose vertex set V' is {0, 1}",
and whose edges are defined by: two vertices u = ujus...u, and v = viv,...0v, are
adjacent iff u; # v; for exactly one i € [n]. Let R[V] be the vector space of all the
functions f : V' — R. The space R[V] has a natural inner product. For f,g € R[V],

<fg>= Y fluglu).
ue{0,1}n
The standard basis of R[V] is the set {f, : v € {0,1}"} where f,(v) = 04, the
Kronecker delta, for u,v € {0,1}". Denote by Bj the standard basis.
(1) For any two vertices u,v € {0,1}", u - v is defined to be ) . u;v;. For each
u € {0,1}", define a function x, € R[V] by letting

Xu(v) = (=1)"".
Prove that the set {x, : u € {0,1}"} is orthogonal with respect to the inner
product of R[V], i.e.,
< Xus Xo >= 0y 02",
for all u,v € {0,1}™.
(2) Prove that the set {x, : u € {0,1}"} forms a basis of the vector space R[V].
Denoted by Bs this basis.
(3) For 1 <i <m,lete; =(0,...,0,1,0,...,0) € {0,1}" where the only 1 occurs
in position i. Let S = {ej,eq,...,e,}.
Define a linear transformation ® : R[V] — R[V] as follows. For f € R[V],
® f is the element in R[V] which is given by

@) =3 flo+e)
e;ES
where v + ¢; is the usual vector addition modulo 2.
Prove that the matrix of & with respect to the standard basis B is just

A(C,,), the adjacency matrix of the hypercube C,,.
1



(4) Prove that ®y, = \,x, for each u € {0,1}", where

Ay = (=" =n—2lul,

eeS

where |u| is the number of 1’s in v = ujusy . .. u,.
(5) Compute the eigenvalues of the matrix A(C,,).

3. Let A € R™" and assume that there are unitary matrix () and diagonal matrix
D = diag(\y, -+, \n) such that A = QDQ*. Let Ej be the space spanned by the first
k columns of (). We let

P = (Ik o>’ P =QPQ*
where [ is the k£ x k identity matrix.

(1) Show that P is an orthogonal projection onto FEj.
(2) Assume that

Al = 2 M > A = - = A
Let X(© ¢ R™* and assume PX(© is injective. We define the iterations
Xt = Ax ),

Show that there is a matrix A € R*** such that

IAX™ XU (Daaa )" HAXD = XON g g o)
[PXtmy| N [ | PX O] ’
4. For the one-way equation
(1) w + aug = f,

consider the multistep scheme given by

n+1
m—1 __ pn+l
_fm .

Suntt — 4y 4 ynt N au’,f:;ll —u
2k 2h
(1) Show that the scheme is second order accurate.
(2) Show that the scheme is unconditionally stable.
(Hint: (i) apply von Neumann analysis to the scheme with f = 0 and find
the characteristic polynomial. (ii) show that for all k, h, the characteristic
polynomial satisfies the root condition: all roots reside in the unit disk, and
all roots on the unit circle are simple. (iii) for a root r of the characteristic
polynomial, it would be more convenient to study the form % = X +1¢Y and
prove that X2 +Y? > 1.)

(2)



3

5. For a convex function f : D — R, where D C R" is convex and open, define a
subgradient of f at zp € D to be any vector s € R"” such that

f(@) = f(xo) = s - (x = o)

for all x € D. The subgradient is a plausible choice for generalizing the notion of a
gradient at a point where f is not differentiable. The subdifferential 0f(x) is the set
of all subgradients of f at xg.

(1)
(2)

(3)

What is 9f(0) for the function f(x) = |z|.
Suppose we wish to minimize a convex and continuous function f : R" —
R, which may not differentiable everywhere. Propose an optimality condition
involving subdifferential for a point x, to be a minimizer of f. Show that your
condition holds if and only if z, is a globally minimizer f.
The subgradient method extends the gradient descent to a wider class of func-
tions. Analogously to the gradient descent, the subgradient method performs
the iteration
Trt1 = T — QG

where v > ( is small stepsize that is known as the learning rate, and gy is any
subgradient of f at xp. This method might not decrease f in each iteration, so
instead we keep track of the best iterate we have seen so far, zpt.

In the following parts, assume that f is Lipschitz continuous with constant
L >0, |x; — z.]|]2 < B for some B > 0. Under these assumptions we will show

that
2

L
lim f(af™) < f(e) + a,

a bound characterizing convergence of the subgradient method.
(a) Derive an upper bound for the error |zzi; — z.||3 of zpy1 in terms of
2k — 213, gk, @, f(21) and f(z.).
(b) By recursively applying the result from Problem 3a, provide an upper
bound for ||z, 1 — x.]|3.
(c) Incorporate f(zb®') into your upper bound in Problem 3b, and take a limit
as k — 0o to obtain the desired convergence result (3).

(d) Suggest a best choice of the learning rate «.
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