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Analysis and Differential Equations
Solve every problem.

Problem 1. Prove that f (x) ≡ 0 is the only solution in L2(Rn) such that

4 f = 0.

Solution: Consider the Fourier transform of the equation 4 f = 0. This yields

−|ξ |2 f̂ (ξ) = 0.

By the Plancherel Theorem, f ∈ L2(Rn) implies that f̂ ∈ L2(Rn). Therefore, the above equation shows supp
(

f̂
)
⊂ {0}.

Hence f̂ = 0 in L2. Hence, f = 0 in L2. Since harmonic functions are smooth, f ≡ 0.

Problem 2. Let X ⊂ C ([0,1]) be a finite dimensional linear subspace of the space of real-valued continuous
functions on [0,1]. Show that, for a sequence of functions { fk}k>1 ⊂ X , if it converges pointwise, it converges
uniformly.

Solution: Let ϕ1, . . . , ϕn be a basis of X . We first show that there exists t1, t2, . . . , tn ∈ [0,1] so that det
(
ϕi(tj)

)
, 0,

where 1 6 i, j 6 n. Consider the linear functionals

`t : X → R, f 7→ f (t).

We have ∩t∈[0,1]ker(`t ) = {0}. Therefore, there exists t1, t2, . . . , tn ∈ [0,1] so that ∩i6nker(`ti ) = {0}. This means that
det

(
ϕi(tj)

)
, 0.

We write { fk}k>1 in terms of our basis:

fk(x) =
n∑
j=1

α
(k)
j ϕj(x).

Therefore, ©­­­­«
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We obtain that ©­­­­­«
α
(k)
1
α
(k)
2
...

α
(k)
n

ª®®®®®¬
= A−1
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Since { fk}k>1 converges pointwise, it converges on x1, . . . , xn. Therefore,{α(k)i }k>1 converges to some αi . This implies
that { fk}k>1 converges uniformly to α1ϕ1 + · · · + αnϕn.

Problem 3.

(a) For f ∈ L1(Rn), g ∈ L∞(Rn), show that their convolution f ∗ g is a well-defined continuous function.



(b) Let E ⊂ Rn be a Lebesgue measurable set with Lebesgue measure m(E) > 0. Prove that

E − E :=
{

x − y
�� x ∈ E, y ∈ E

}
contains an open neighborhood of 0 ∈ Rn.

Solution:

(a) This is standard: In fact, we have ‖ f ∗ g‖L∞ 6 ‖ f ‖L1 ‖g‖L∞ . Therefore, by the continuity argument, it suffices
to prove the theorem for f ∈ C∞0 (R

n). In this case, we have

| f ∗ g(x0 + x) − f ∗ g(x0)| =

����∫
Rn

(
f (x0 + x − y) − f (x0 − y)

)
g(y) dy

����
6 ‖g‖L∞

∫
Rn

�� f (x0 + x − y) − f (x0 − y)
�� dy

Now let x → 0, the integrand converges to 0 uniformly. This yields (a).

(b) It suffices to consider the case where m(E) < ∞. We take f = 1E , g = 1−E , thus h(x) = f ∗ g is a continuous
function. In particular, h(0) = m(E) > 0. Therefore, there exists an open set U such that 0 ∈ U and h

��
u
> δ > 0

for some δ > 0. For x ∈ U, by definition,

h(z) =
∫

Rn
1E (x − y)1−E (y)dy > 0.

Therefore, there must be some y ∈ −E , such that x − y = x + (−y) ∈ E . This implies x ∈ E − (−y) ⊂ E − E .
Hence U ⊂ E − E .

Problem 4. Assume that P is a polynomial with complex coefficients. Prove that there exists infinitely
many solutions of the following equations on C:

ez = P(z).

Solution: This is an application of big Picard’s theorem at 0.

Problem 5. Let f be a bounded holomorphic function defined on B =
{
z
�� 0 < Re(z) < 1

}
that can be

extended as a continuous function on B. Let

A0 = sup
Re(z)=0

| f (z)| > 0, A0 = sup
Re(z)=1

| f (z)| > 0.

Prove that for all z ∈ B, we have
| f (z)| 6 (A0)

1−Re(z)(A1)
Re(z).

Solution: We consider the function g(z) = f (z)(A0)
z−1(A1)

−z . This is a holomorphic function defined on B and
bounded by 1. We consider the function h(z) = g(z)eεz

2 . This function is bounded for z → ±i∞, therefore, it is
bounded by its maximal value on the boundary. Letting ε → 0 proves the statement.



Problem 6. Assume that Ω ⊂ Rn is a bounded domain with smooth boundary. Prove that there exists a
positive constant ε0 so that for all real numbers ε < ε0, for all f ∈ L2(Ω), there exist a unique u ∈ H1

0 (Ω) so
that

−4u + ε sin(u) = f

in the sense of distributions.

Solution: We consider the functional

E(u) =
∫
Ω

1
2 |∇u|2 − cos(u) − f u

defined on H1
0 (Ω). E(u) is bounded below by Poincaré’s inequality. Therefore, a minimizing sequence gives a solution.

To show that the solution is unique, we assume that u1,u2 ∈ H1
0 (Ω) so that

−4ui + ε sin(ui) = f =⇒ −4(u1 − u2) + ε (sin(u1) − sin(u2)) = 0.

We multiply the equation by u1 − u2 and the integrate by parts, this leads to

∇(u1 − u2)


2
L2 = ε

����∫
Ω

(u1 − u2)(sin(u1) − sin(u2))

���� 6 ε ����∫
Ω

|u1 − u2 | |u1 − u2 |

���� .
Therefore, 

∇(u1 − u2)



2
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u1 − u2


2
L2 .

If ε0 < λ1(Ω), the Poincaré inequality implies that

∇(u1 − u2)


2
L2 6

ε

λ1(Ω)



∇(u1 − u2)


2
L2 .

Hence, u1 = u2.


