
S.-T. Yau College Student Mathematics Contests 2021

Geometry and Topology
Solve every problem.

Problem 1.

(a) Show that P2n can not be the boundary of a compact manifold.

(b) Show that P3 is the boundary of some compact manifold.

Solution:

(a) Suppose M is a compact manifold and ∂M is its boundary. We can glue together two copies of M , say M1,M2,
to get a closed manifold M̃ . From the Mayer-Vietoris long exact sequence for the triad (M̃; M1,M2), we have
the identity

χ(M̃) = 2χ(M) − χ(∂M),

where χ is the Euler characteristic. If the dimension of ∂M is even, then the dimension of M is odd, and so is
the dimension of M̃ . By Poincate duality, χ(M̃) = 0. So χ(∂M) has to be an even number. However, RP2n has
odd Euler characteristic. Thus RP2n can not be the boundary of a compact manifold.

(b) Since RP3 is diffeomorphic to SO(3), it is actually the circle bundle on S2 in the tangent bundle of S2. Thus
RP3 is the boundary of the disk bundle of S2 in the tangent bundle of S2.

Problem 2. Suppose M is a noncompact, complete n-dimensional manifold, and suppose there is an open
subset U ⊂ M and an open set V ⊂ Rn such that M\U is isomorphic to Rn\V . If RicM ≥ 0, show that M is
isometric to Rn.

Solution: Without loss of generality, we may assume V = BR(0) for some R > 0. Let p ∈ M be a point. If RicM ≥ 0,

by the Bishop-Gromov inequality, we know
Vol(Br (p))
Vol(Bn

r )
is non-increasing. Here, Bn

r is the standard Euclidean ball in

Rn with radius r . On one hand, as r → 0, because M is a smooth manifold, we have lim
r→0

Vol(Br (p))
Vol(Bn

r )
= 1; one the other

hand, when r → ∞, because M\U is isomorphic to Rn\BR(0), we also have lim
r→∞

Vol(Br (p))
Vol(Bn

r )
= 1. As a consequence,

Vol(Br (p))
Vol(Bn

r )
is a constant 1 for all r > 0. Then by the rigidity case of Bishop-Gromov theorem, M is isometric to Rn.

Remark: Some students may want to use the Cheeger-Gromoll splitting theorem to show M � N × R, then conclude
that M � Rn. To my knowledge, it is actually hard to show that one can find a straight line in M . In fact, for a straight
line in Rn\V , its corresponding line in M may not be straight, because there could be a shorter path going through U
which connects two points on the line.

Problem 3. Compute all the homotopy groups of the n-torus Tn = S1 × S1 × · · · × S1, n ≥ 2.

Solution: In the following homotopy groups we always assume that we have fixed a base point.

Because Tn is connected, π0(Tn) is a trivial group.

π1(Tn) is the fundamental group of Tn. Because the fundamental group of a product space is just the product of each
fundamental group, and the fundamental group of S1 is Z, so π1(Tn) = Zn.

The universal cover of Tn is Rn, which is contractible. So for all k ≥ 2, πk(Tn) � πk(Rn) = 0, which is the trivial
group.



Problem 4. Consider the upper half space H3 = {(x, y, z) | z > 0} equipped with hyperbolic metric

g =
dx2 + dy2 + dz2

z2 . Let P be the surface defined by {z = x tanα, z > 0} for some α ∈ (0, π2 ). Compute
the mean curvature of P.

Solution: We use ∂x , ∂y and ∂z to denote the vector fields on H3 induced from R3. Then we can compute the
Christoffel symbols 

Γizi = −z−1

Γ
z
j j = z−1, j , z
Γki j = 0, other cases.

So the covariant derivatives are 

∇∂x ∂x = z−1∂z
∇∂y ∂y = z−1∂z
∇∂z ∂z = −z−1∂z
∇∂z ∂x = ∇∂x ∂z = −z−1∂x
∇∂z ∂y = ∇∂y ∂z = −z−1∂y
∇∂x ∂y = ∇∂y ∂x = 0

Now consider the surface P parametrized by F : (u, v) → (u, v,u tanα). Then at any fixed point the tangent space is
spanned by

Fu = ∂x + tanα∂z, Fv = ∂y,

with the metric
guv = z−2

(
1 + tan2 α 0

0 1

)
.

We can also find a unit normal vector
n =

z
√

1 + tan2 α
(tanα∂x − ∂z).

Next, we can compute that
∇Fu Fu = (1 − tan2 α)z−1∂z − 2 tanαz−1∂x,
∇Fv Fu = − tanαz−1∂y,
∇Fv Fv = z−1∂z .

Moreover,
〈∇Fu Fu,n〉 = − 1

z2
√

1+tan2 α
(1 + tan2 α),

〈∇Fv Fu,n〉 = 0,
〈∇Fv Fv,n〉 = − 1

z2
√

1+tan2 α
.

So the mean curvature is
H = −gi j 〈∇Fi Fj,n〉 =

2
√

1 + tan2 α
= 2 cosα.

Remark: There are different conventions for the definition of mean curvature, so the final answer could be cosα,
−2 cosα, or − cosα, depending on the choice of definitions.

Problem 5. Suppose M is a compact 2-dimensional Riemannian manifold without boundary, with positive
sectional curvature. Show that any two compact closed geodesics on M must intersect with each other.

Solution: We prove by contradiction. Suppose there exist two compact closed geodesics γ1 and γ2 that do not intersect
with each other. Then we can find p ∈ γ1 and q ∈ γ2 such that the distance between p,q is the shortest distance among
all pairs of points on γ1 and γ2. Let γ̃ : [a, b] → M be a length parametrized geodesic connecting γ̃(a) = p and
γ̃(b) = q, whose length realizes this shortest distance. Let ` be the length functional of curves. By the first variational
formula,

δ`(γ̃) = 0.



Namely, if V is a normal variational vector field along γ̃, suppose γ̃s is a family of curves generating this variational
vector field, then

0 =
d`(γ̃s)

ds

����
s=0
= −

〈
V(a), Û̃γ(a)

〉
+

〈
V(b), Û̃γ(b)

〉
.

As a consequence, we know that Û̃γ(a) is perpendicular to γ1 at p and Û̃γ(b) is perpendicular to γ2 at q.

Next we consider the second variational formula. Suppose X is a vector field along γ̃, where |X(a)| = 1 and X(a) is
perpendicular to γ̃(a), and X(t) is defined by parallel transport along γ̃ for a < t ≤ b. Suppose γ̃s is a family of curves
that generate X , then

0 ≤
d2`(γ̃s)

ds2

����
s=0
=

∫ b

a

−R( Û̃γ,X,X, Û̃γ)dt + 〈∇X(a)X(a), Û̃γ(a)〉 − 〈∇X(b)X(b), Û̃γ(b)〉.

Notice that γ1 and γ2 are geodesics and X(a), X(b) are both unit vectors in the direction of γ1, γ2 at p,q respectively,
so ∇X(a)X(a) = 0 and ∇X(b)X(b) = 0, and as a consequence

0 ≤
d2`(γ̃s)

ds2

����
s=0
=

∫ b

a

−R( Û̃γ,X,X, Û̃γ)dt =
∫ b

a

− sec( Û̃γ,X)dt < 0.

This is a contradiction.

Problem 6. Suppose Σ is a smooth compact embedded hypersurface (i.e. a codimension 1 submanifold)
without boundary in Rn for n ≥ 3. Show that Σ is orientable.

Solution: We first claim that it suffices to show Σ has a trivial normal bundle in Rn. In fact, the trivial bundle has the
splitting Rn × Σ = TΣ ⊕ NΣ, so the first Stiefel-Whitney class of the bundles satisfies

0 = w1(TΣ) + w1(NΣ).

If the line bundle of Σ is trivial, we must have w1(NΣ) = 0, therefore w1(TΣ) = 0. This is equivalent to Σ being
orientable.

Thus it remains to show that Σ has a trivial normal bundle. We prove by contradiction. We can view the tubular
neighbourhood T of Σ as a part of NΣ. If Σ has a non-trivial normal bundle, then there exists a closed curve γ in T
that only intersects Σ at a single point transversely. Consider a smoothly embedded disk D bounded by γ that intersects
Σ transversely. Then the intersection of D and Σ consists of finitely many smooth curves whose endpoints lie on the
boundary ∂D = γ. This implies that γ intersects Σ at an even number of points, which is a contradiction.


