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Probability and Statistics
Solve every problem.

Problem 1. Let {𝑋𝑛} be a sequence of Gaussian random variables. Suppose that 𝑋 is a random variable such
that 𝑋𝑛 converges to 𝑋 in distribution as 𝑛 → ∞. Show that 𝑋 is also a (possibly degenerate, i.e., variance zero)
Gaussian random variable.

Solution: Let 𝑓𝑛(𝑡) = 𝔼 𝑒𝑖𝑡𝑋𝑛 be the characteristic function of 𝑋𝑛 and 𝑓(𝑡) = 𝔼 𝑒𝑖𝑡𝑋 be that of 𝑋. There are real numbers
𝜇𝑛 and 𝜎𝑛 such that 𝑓𝑛(𝑡) = 𝑒𝑖𝜇𝑛𝑡−𝜍

2
𝑛𝑡

2/2. We have |𝑓𝑛(𝑡)|
2
→ |𝑓(𝑡)|

2, hence 𝑒−𝜍2𝑛𝑡2 → |𝑓(𝑡)|2 for all 𝑡 ∈ 𝐑. Since 𝑓(𝑡) ≠ 0 if 𝑡
is close to 0, we must have 𝜎2𝑛 → 𝜎2 for some 𝜎 ∈ [0,∞). Now we have 𝑒𝑖𝜇𝑛𝑡 → 𝑓(𝑡)𝑒𝜍

2𝑡2 for all 𝑡 ∈ 𝐑 and by the dominated
convergence theorem,

lim
𝑛→∞

∫

𝑡

0

𝑒𝑖𝜇𝑛𝑠 𝑑𝑠 = ∫

𝑡

0

𝑓(𝑠)𝑒𝜍
2𝑠2/2 𝑑𝑠.

The integral on the right side does not vanish if 𝑡 is close, but not equal to, 0 because the integrand is countinuous and equal
to 1 at 𝑠 = 0. On the other hand,

𝑖𝜇𝑛∫

𝑡

0

𝑒𝑖𝜇𝑛𝑠 𝑑𝑠 = 𝑒𝑖𝜇𝑛𝑡 − 1.

This gives

𝜇𝑛 = −𝑖 (𝑓𝑛(𝑡)𝑒
𝜍2𝑛𝑡

2/2 − 1)(∫

𝑡

0

𝑒𝑖𝜇𝑛𝑠 𝑑𝑠)

−1

,

from which we see that that 𝜇𝑛 must converges to a finite number 𝜇. Finally,

𝑓𝑛(𝑡) → 𝑒𝑖𝜇𝑡−𝜍
2𝑡2/2 = 𝑓(𝑡)

and 𝑋must be a (possibly denegerate) Gaussian random variable.

Problem 2. For two probability measures 𝜇 and 𝜈 on the real line 𝐑, the total variation distance ‖𝜇 − 𝜈‖𝑇𝑉 is
defined as

‖𝜇 − 𝜈‖𝑇𝑉 = sup {𝜇(𝐶) − 𝜈(𝐶) ∶ 𝐶 ∈ ℬ(𝐑)} ,

where ℬ(𝐑) is the 𝜎-algebra of Borel sets on 𝐑. Let 𝒞(𝜇, 𝜈) be the space of couplings of the probability measures
𝜇 and 𝜈, i.e., the space of 𝐑2 valued random variables (𝑋, 𝑌) defined on some (not necessarily same) probability
space (Ω, ℱ,ℙ) such that the marginal distributions of 𝑋 and 𝑌 are 𝜇 and 𝜈, respectively. Show that

‖𝜇 − 𝜈‖𝑇𝑉 = inf {ℙ(𝑋 ≠ 𝑌) ∶ (𝑋, 𝑌) ∈ 𝒞(𝜇, 𝜈)} .

For simplicity you may assume that 𝜇 and 𝜈 are absolutely continuous with respect to the Lebesgue measure on
𝐑.

Solution: (1) Let 𝐶 ∈ ℬ(𝐑) and (𝑋, 𝑌) ∈ 𝒞(𝜇, 𝜈). Then

𝜇(𝐶) − 𝜈(𝐶) = ℙ {𝑋 ∈ 𝐶} −ℙ {𝑌 ∈ 𝐶} ≤ ℙ {𝑋 ∈ 𝐶, 𝑌 ∉ 𝐶} ≤ ℙ {𝑋 ≠ 𝑌} .

Taking the supremum over 𝐶 ∈ ℬ(𝐑) and then the infimum over (𝑋, 𝑌) ∈ 𝒞(𝜇, 𝜈) we obtain

‖𝜇 − 𝜈‖𝑇𝑉 ≤ inf {ℙ {(𝑋 ≠ 𝑌} ∶ (𝑋, 𝑌) ∈ 𝒞(𝜇, 𝜈)} .

(2) It is sufficient to a probability measure ℙ ∈ 𝒞(𝜇, 𝜈) and a set 𝐶 ∈ ℬ(𝐑) such that for (𝑋, 𝑌) ∈ 𝐑2 under this probability,

𝜇(𝐶) − 𝜈(𝐶) = ℙ {𝑋 ≠ 𝑌} .



The idea is to constructℙ such that the probabilityℙ {𝑋 = 𝑌} is the largest possible under the condition that (𝑋, 𝑌) ∈ 𝒞(𝜇, 𝜈).
Let 𝑚 = 𝜇 + 𝜈, or just take 𝑚 to be the Lebesgue measure if 𝜇 and 𝜈 are absolutely continuous with respect to 𝑚. We have
𝜇 = 𝑓1 ⋅ 𝑚 and 𝜈 = 𝑓2 ⋅ 𝑚 by the Radon-Nikodym theorem. Let 𝑓 = min {𝑓1, 𝑓2} = 𝑓1 ∧ 𝑓2. Define a probability measure ℙ
on 𝐑2 by

ℙ {(𝑋, 𝑌) ∈ 𝐴 × 𝐵} =
1

1 − 𝑎
∫
𝐴×𝐵

(𝑓1(𝑥) − 𝑓(𝑥))(𝑓2(𝑦) − 𝑓(𝑦))𝑚(𝑑𝑥)𝑚(𝑑𝑦) + ∫
𝐴∩𝐵

𝑓(𝑧)𝑚(𝑑𝑧).

Here 𝑎 = ∫𝐑 𝑓(𝑧)𝑚(𝑑𝑧) and we assume that 𝑎 < 1; otherwise 𝑎 = 1 and 𝑓1 = 𝑓2, and the case is trivial. Note that the first
part is the product measure of (𝑓1−𝑓) ⋅𝑚 and (𝑓2−𝑓) ⋅𝑚) (up to a constant) and the second part is the probability measure
𝑓 ⋅ 𝑚 on the diagonal (identified with 𝐑) of 𝐑2. We have

ℙ {𝑋 ∈ 𝐴} = ∫
𝐴

(𝑓1(𝑥) − 𝑓(𝑥))𝑚(𝑑𝑥) + ∫
𝐴

𝑓(𝑧)𝑚(𝑑𝑧) = ∫
𝐴

𝑓1(𝑥)𝑚(𝑑𝑥) = 𝜇(𝐴).

Similarly ℙ {𝑌 ∈ 𝐵} = 𝜈(𝐵), hence (𝑋, 𝑌) ∈ 𝒞(𝜇, 𝜈). On the other hand,

ℙ {𝑋 ≠ 𝑌} = ∫
𝐑

(𝑓1(𝑥) − 𝑓(𝑥))𝑚(𝑑𝑥) = 1 − 𝑎.

If we choose 𝐶 = {𝑓1 > 𝑓2}, then

𝜇(𝐶) − 𝜈(𝐶) = ∫
𝐶

(𝑓1(𝑥) − 𝑓2(𝑥))𝑚(𝑑𝑥) = ∫
𝐑

(𝑓1(𝑥) − 𝑓(𝑥))𝑚(𝑑𝑥) = 1 − 𝑎.

This shows that 𝜇(𝐶) − 𝜈(𝐶) = ℙ {𝑋 ≠ 𝑌}.

Problem 3. We throw a fair die repeatedly and independently. Let 𝜏11 be the first time the pattern 11 (two
consecutive 1’s) appears and 𝜏12 the first time the pattern 12 (1 followed by 2) appears.

(a) Calculate the expected value 𝔼𝜏11.

(b) Which is larger, 𝔼𝜏11 or 𝔼𝜏12? It is sufficient to give an intuitive argument to justify your answer. You can
also calculate 𝔼𝜏12 if you wish.

Solution:

(a) Let 𝜏1 be the first time the digit 1 appears. At this time, if the next result is 1, then 𝜏11 = 𝜏1 + 1; if the next result is
not 1, then the time is 𝜏1 + 1 and we have to start all over again. This means

𝔼𝜏11 =
1
6
⋅ {𝔼𝜏1 + 1} +

5
6
⋅ {𝔼𝜏1 + 1 +𝔼𝜏11} .

Solving for 𝔼𝜏11 we have 𝔼𝜏11 = 6(𝔼𝜏1+1). We need to calculate 𝔼𝜏1. The set {𝜏1 ≥ 𝑛} is the event that that none of
the first 𝑛 − 1 results is 1, hence ∓{𝜏1 ≥ 𝑛} = (5/6)𝑛−1 and

𝔼𝜏1 =
∞

∑
𝑛=1

∓{𝜏1 ≥ 𝑛} =
∞

∑
𝑛=1

(
5
6
)
𝑛−1

= 6.

It follows that 𝔼𝜏11 = 6(6 + 1) = 42.

(b) For either 11 or 12 to occur, we have to wait until the first 1 occurs. After that, if we want 11, the next digit needs
to be 1; otherwise we have to start all over again (i.e., waiting for the next 1). But if we want 12, the next digit needs
to be 2; otherwise, we have to start all over again only if the next digit is 3 to 6 because if the next digit is 1, we have
already have a start on the pattern 12. It follows that the pattern 12 has a slight advantage to occur earlier than 11.
Thus we have 𝔼𝜏12 ≤ 𝔼𝜏11.

We can also calculate 𝔼𝜏12 directly. Let 𝜏1 be as before and let 𝜎 be the first time a digit not equal to 1 appears. After
𝜏1 we wait until the first time a digit not equal to 1 appears. With probability 1/5 this digit is 2; with probability 4/5
this probability is not 2, then we have to start over again. This means that

𝔼𝜏12 =
1
5
⋅ {𝔼(𝜏1 + 𝜎)} +

4
5
⋅ {𝔼(𝜏1 + 𝜎) +𝔼𝜏12} .



Hence 𝔼𝜏12 = 5𝔼(𝜏1 + 𝜎). We have seen 𝔼𝜏1 = 6. On the other hand, {𝜎 ≥ 𝑛} is the event that the first 𝑛 − 1 digits
are 1, hence ∓{𝜎 ≥ 𝑛} = (1/6)𝑛−1 and 𝔼𝜎 = 6/5. It follows that

𝔼𝜏12 = 5(6 +
6
5
) = 36.

Problem 4. Let {𝑋𝑛} be a Markov chain on a discrete state space 𝑆 with transition function 𝑝(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑆.
Suppose that there is a state 𝑦0 ∈ 𝑆 and a positive number 𝜃 such that 𝑝(𝑥, 𝑦0) ≥ 𝜃 for all 𝑥 ∈ 𝑆.

(a) Show that is a positive constant 𝜆 < 1 such that for any two initial distribution 𝜇 and 𝜈,

∑
𝑦∈𝑆

||ℙ𝜇 {𝑋1 = 𝑦} −ℙ𝜈 {𝑋1 = 𝑦}|| ≤ 𝜆 ∑
𝑦∈𝑆

|𝜇(𝑦) − 𝜈(𝑦)| .

(b) Show that the Markov chain has a unique stationary distribution 𝜋 and

∑
𝑦∈𝑆

||ℙ𝜇 {𝑋𝑛 = 𝑦} − 𝜋(𝑦)|| ≤ 2𝜆𝑛.

Solution:

(a) Let 𝜃 = min {𝑝(𝑥, 𝑦0) ∶ 𝑥 ∈ 𝑆}. Then 0 < 𝜃 ≤ 1. For any two probability meausres 𝜇 and 𝜈 on the state space 𝑆, we
have

∑
𝑦∈𝑆

|ℙ𝜇 {𝑋1 = 𝑦} −ℙ𝜈 {𝑋1 = 𝑦} | = ∑
𝑦∈𝑆

|
|
|
∑
𝑥∈𝑆

{𝜇(𝑥) − 𝜈(𝑥)} 𝑝(𝑥, 𝑦)
|
|
|
.

For the term 𝑦 = 𝑦0 we can replace 𝑝(𝑥, 𝑦0) by 𝑝(𝑥, 𝑦0) − 𝜃 because ∑
𝑥∈𝑆 {𝜇(𝑥) − 𝜈(𝑥)} = 1 − 1 = 0. After this

replacement, we take the absolute value of every term and exchange the order of summation. Using the fact that
𝑝(𝑥, 𝑦0) − 𝜃 ≥ 0 we have

∑
𝑦∈𝑆

|ℙ𝜇 {𝑋1 = 𝑦} −ℙ𝜈 {𝑋1 = 𝑦} | ≤ [∑
𝑦∈𝑆

𝑝(𝑥, 𝑦) − 𝜃] ⋅ ∑
𝑥∈𝑆

|𝜇(𝑥) − 𝜈(𝑥)|.

The first sum on the right side is 1 − 𝜃 = 𝜆 < 1. It follows that

∑
𝑦∈𝑆

|ℙ𝜇 {𝑋1 = 𝑦} −ℙ𝜈 {𝑋1 = 𝑦} | ≤ 𝜆 ∑
𝑥∈𝑆

|𝜇(𝑥) − 𝜈(𝑥)|.

(b) Let 𝜇𝑛(𝑥) = ℙ𝜇 {𝑋𝑛 = 𝑥}. Then 𝜇𝑛+1 = ℙ𝜇𝑛 {𝑋1 = 𝑥} and 𝜇𝑛 = ℙ𝜇𝑛−1 {𝑋1 = 𝑥}. By (a),

∑
𝑥∈𝑆

|𝜇𝑛+1(𝑥) − 𝜇𝑛(𝑥)| ≤ 𝜆 ∑
𝑥∈𝑆

|𝜇𝑛(𝑥) − 𝜇𝑛−1(𝑥)|.

It follows that
∑
𝑥∈𝑆

|𝜇𝑛+1(𝑥) − 𝜇𝑛(𝑥)| ≤ 𝜆𝑛 ∑
𝑥∈𝑆

|𝜇1(𝑥) − 𝜇(𝑥)| ≤ 2𝜆𝑛.

Since 0 ≤ 𝜆 < 1, the distributions 𝜇𝑛 converges to a distribution 𝜋, which is obviously stationary. We have by the
same argument,

∑
𝑦∈𝑆

|ℙ𝜇 {𝑋𝑛 = 𝑦} − 𝜋(𝑦)| = ∑
𝑦∈𝑆

|ℙ𝜇 {𝑋𝑛 = 𝑦} −ℙ𝜋 {𝑋𝑛 = 𝑦} | ≤ 2𝜆𝑛.

If 𝜎 is another stationary distribution, then

∑
𝑦∈𝑆

|𝜎(𝑦) − 𝜋(𝑦)| = ∑
𝑦∈𝑆

|ℙ𝜍 {𝑋𝑛 = 𝑦} −ℙ𝜋 {𝑋𝑛 = 𝑦} | ≤ 2𝜆𝑛 ⟶0.

Hence a stationary distribtuion of the Markov chain must be unique.



Problem 5. Consider a linear regression model with 𝑝 predictors and 𝑛 observations:

𝐘 = 𝑋𝛽 + 𝐞,

where 𝑋𝑛×𝑝 is the design matrix, 𝛽 is the unknown coefficient vector, and the random error vector 𝐞 has a mul-
tivariate normal distribution with mean zero and Var(𝐞) = 𝜎2𝐼𝑛 (𝜎2 > 0 unknown and 𝐼𝑛 is the identity matrix).
Here rank(𝑋) = 𝑘 ≤ 𝑝, 𝑝may or may not be greater than 𝑛, but we assume 𝑛 − 𝑘 > 1. Let 𝐱1 = (𝑥1,1,… , 𝑥1,𝑝) be
the first row of 𝑋 and define

𝛾 =
𝐱1𝛽

𝜎
.

Find the uniformly minimum variance unbiased estimator (UMVUE) of 𝛾 or prove it does not exist.

Solution: The key points in the solution are the following.

(i) Any least squares estimator, say ̂𝛽, of 𝛽 is independent of 𝜎̂2 = ‖𝐘 − 𝑋 ̂𝛽‖2/(𝑛 − 𝑘).

(ii) 𝐱1𝛽 is clearly estimable.

(iii) Based on (i) and (ii), we can constructor an unbiased estimator, say ̂𝛾, of 𝛾 in terms of ̂𝛽 and 𝜎̂2, and consequently we
know the estimator is a function of 𝑋𝑇𝐘 and ‖𝐘 − 𝑋 ̂𝛽‖2.

(iv) In fact, (𝑋𝑇𝐘, ‖𝐘 − 𝑋 ̂𝛽‖2) is a complete and sufficient statistic and we conclude ̂𝛾 is the UMVUE of 𝛾. More details
are given below.

Let ̂𝛽 = (𝑋𝑇𝑋)−𝑋𝑇𝑌 be a least squares estimator of 𝛽, where (𝑋𝑇𝑋)− denotes any generalized inverse of 𝑋𝑇𝑋. Let 𝜃 = 𝐱1𝛽,
which is clearly estimable. By Gauss-Markov Theorem, we know ̂𝜃 =∶ 𝐱1 ̂𝛽 is the best linear unbiased estimator of 𝜃. For
the unbiased estimator 𝜎̂2 = ‖𝐘 − 𝐘̂‖2/(𝑛 − 𝑘), we know (𝑛 − 𝑘)𝜎̂2/𝜎2 has 𝜒2𝑛−𝑘 distribution, which belongs to the Gamma
family. Thus, it is readily seen that 𝐸(1/𝜎̂) = 𝐶/𝜎, where 𝐶 is a known constant (𝐶 = √𝑛− 𝑘Γ(𝑛−𝑘−1

2
)/(√2Γ(𝑛−𝑘

2
))).

Let ̂𝛾 = ̂𝜃/(𝐶𝜎̂). Let𝐻 = 𝑋(𝑋𝑇𝑋)−𝑋𝑇 denote the projectionmatrix. Clearly, (𝐼𝑛−𝐻)𝑋 = 0, which impliesCov((𝑋𝑇𝑋)−𝑋𝑇𝐘, (𝐼𝑛−
𝐻)𝐘) = 0. Together with the Gaussian error assumption, we know (𝑋𝑇𝑋)−𝑋𝑇𝐘 and (𝐼𝑛 −𝐻)𝐘 are independent. It follows
that ̂𝛽 (any choice) and 𝜎̂2 are independent. This leads to the unbiasedness of ̂𝛾.

With elementary simplifications, based on basic exponential family properties, we see that𝑇 = (𝑋𝑇𝑌, ‖𝐘−𝐘̂‖2) is a complete
and sufficient statistic. We conclude that ̂𝛾 is indeed unbiased and a function of a complete and sufficient statistic, and hence
it must be the UMVUE of 𝛾.

Problem6. Let𝑋1,… ,𝑋2022 be independent randomvariableswith𝑋𝑖 ∼  𝑁( 𝜃𝑖, 𝑖
2), 1 ≤ 𝑖 ≤ 2022. For estimating

the unknown mean vector 𝜽 ∈ 𝑅2022, consider the loss function 𝐿(𝜽, 𝐝) = ∑
2022

𝑖=1
(𝑑𝑖 − 𝜃𝑖)

2/𝑖2. Prove that 𝐗 =

(𝑋1,… ,𝑋2022) is a minimax estimator of 𝜽.

Recall: If 𝑌|𝜇  ∼ 𝑁(𝜇, 𝜎2) and 𝜇 ∼  𝑁(𝜇0, 𝜎
2
0) then 𝜇|𝑌 = 𝑦 ∼ 𝑁(

𝜇0/𝜍
2
0+𝑦/𝜍

2

1/𝜍20+1/𝜍
2
, 1
1/𝜍20+1/𝜍

2 ).

Solution: We show 𝐗, as an equalizer (constant risk), achieves the limit of Bayes risks under certain priors. First, consider
independent priors  𝜃𝑖 ∼  𝑁(0,  𝜏2), 1 ≤ 𝑖 ≤ 2022. Then, the Bayes estimator 𝛿𝜏 has the 𝑖-th component (estimator of 𝜃𝑖)
being the posterior mean 𝐸𝜏(𝜃𝑖|𝐗) =

𝑋𝑖/𝑖
2

1/𝜏2+1/𝑖2
. The associated Bayes risk is 𝑅𝜏(𝛿𝜏) = ∑

2022

𝑖=1
𝑖−2 1

1/𝜏2+1/𝑖2
. Clearly, as 𝜏 → ∞,

𝑅𝜏(𝛿𝜏) → ∑
2022

𝑖=1
1 = 2022, which is identical to the Bayes risk of 𝐗. This implies that 𝑁(0,  𝜏2) with 𝜏 → ∞ gives a least

favorable sequence of priors and 𝐗 is minimax.


