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Computational and Applied Mathematics
Solve every problem.

Problem 1.

(a) Show that
Tn(x) = cos(n arccos x), x ∈ [−1,1],

is a polynomial of degree n with extrema at

xk = cos
(
k
π

n

)
, k = 0,1, . . . ,n

and leading coefficient 2n−1.

(b) Show that if f ∈ Cn+1[−1,1] and if P(x) is the polynomial with degree at most n that interpolates f
at xk , k = 0,1, . . . ,n then

‖ f (x) − P(x)‖∞ ≤
1

2n−1(n + 1)!


 f n+1



∞
.

Solution:

(a)
cos(n arccos(cos(kπ/n))) = cos(kπ) = (−1)k for k = 0,1, . . . ,n.

To show the degree of Tn, we use induction. T0(x) = 1 and T1(x) = x.
Induction hypothesis: Tk is a polynomial of degree k and leading coefficient 2k−1 for k ≤ n.
Note that

Tn+1(x) + Tn−1(x) = cos ((n + 1) arccos x) + ((n − 1) arccos x)

= 2x cos(n arccos x)

= 2xTn(x).

Now suppose Tn is of degree n and with leading coefficient 2n−1. From the above calculation,

Tn+1(x) = 2xTn(x) − Tn−1(x),

which shows that Tn+1 is of degree n + 1 and has leading coefficient 2n. This completes the proof to part (a).

(b) Essentially, this boils down to proving the following,

max
[−1,1]

|(x − x0)(x − x1) · · · (x − xn)| ≤
1

2n−1 .

To show this, we define a new Chebyshev-like polynomial. Define

Qn(x) := sin(n arccos x)
√

1 − x2, n = 1,2, . . .

Claim: Qn is of degree n + 1 with leading coefficient −2n−1.
We prove this claim by induction.
Q1(x) = 1 − x2 and Q2(x) = 2x sin(arccos x)

√
1 − x2 = 2x(1 − x2). This satisfies the claim and serves as the



base case.
Induction hypothesis: Qk is a polynomial of degree k + 1 and leading coefficient −2k−1 for k ≤ n.
Note,

Qn+1(x) −Qn−1(x) = [sin ((n + 1) arccos x) − sin ((n − 1) arccos x)]
√

1 − x2

= 2 cos(n arccos x) sin(arccos x)
√

1 − x2

= 2(1 − x2)Tn(x).

Therefore,
Qn+1(x) = 2(1 − x2)Tn(x) +Qn−1(x).

Using part (a) and the induction hypothesis, Qn+1 is a polynomial of degree n + 2 and leading coefficient −2n.
This completes the proof to claim.
Also note that x0, x1, . . . , xn are the roots of Qn. As a result,

Qn = −2n−1(x − x0)(x − x1) . . . (x − xn).

Since max[−1,1]Qn = 1, the result follows.

Problem 2. Let S(x) be a cubic spline with knots {ti}ni=0. If it is determined that S(x) is linear over [t1, t2]
and [t3, t4]. Prove that S(x) is also linear over [t2, t3].

Solution: First define p : R→ R by

p(x) =
S′′(t3)(x − t2)3

6(t3 − t2)
+

S′′(t2)(t3 − x)3

6(t3 − t2)
+

[
S(t3)

t3 − t2
−

S′′(t3)(t3 − t2)
6

]
(x − t2)

+

[
S(t2)

t3 − t2
−

S′′(t2)(t3 − t2)
6

]
(t3 − x).

We claim that p = S in [t2, t3]. Since deg(p) = deg(S) = 3, we will be done if we show p and S match at four distinct
constraints. Observe

p(t2) = 0 +
S′′(t2)(t3 − t2)2

6
+ 0 +

[
S(t2)

t3 − t2
−

S′′(t2)(t3 − t2)
6

]
(t3 − t2) = S(t2).

In a similar fashion, we also have
p(t3) = S(t3).

Moreover,
p′′(x) = S′′(t3)

x − t2
t3 − t2

+ S′′(t2)
x − t3
t2 − t3

,

which is the Lagrange interpolating polynomial between S′′(t2) and S′′(t3), i.e.,

p′′(ti) = S′′(ti),

for i = 2,3. This shows four degrees of freedom for which p matches S, and so we conclude p = S in [t2, t3].

We use the fact p = S to show S is linear over [t2, t3]. Because S is linear over [t1, t2] and [t3, t4], we have S′′(t2) =
S′′(t3) = 0. This implies for [t2, t3],

S(x) = p(x) = 0 + 0 +
[

S(t3)
t3 − t2

− 0
]
(x − t2) +

[
S(t2)

t3 − t2
− 0

]
(t3 − x) = S(t3)

x − t2
x3 − x2

+ S(t2)
x − t3

x2 − x3
,

i.e., deg(S) = 1. Thus S is linear over [t2, t3].

Problem 3. Let f : R→ R be defined by f (x) = 2x − cos x.

(a) Prove that the equation f (x) = 0 has a unique solution x∗ ∈ R that lies in the interval (14,
1
2 ).



(b) Prove that the sequence defined by the fixed point iteration

x0,

xn = 1
2 cos xn−1, n = 1,2, . . .

converges to x∗ with any initial guess x0.

(c) For the fixed point iteration in (b) with x0 =
π
6 , determine an n that guarantees |xn − x∗ | < 1

2 × 10−8.
For the fixed point iteration in (b) with x0 = 20, determine an n that guarantees |xn − x∗ | < 1

4 .

Solution:

(a) f ( 14 ) =
1
2 − cos 1

4 <
1
2 − cos π

4 < 0. Also, f ( 12 ) = 1− cos 1
2 > 0. Therefore, by the Intermediate Value Theorem,

there exists a root in the said interval. However, since f ′ = 2 + sin x, the function is strictly increasing and the
root is unique.

(b) Set φ(x) := 1
2 cos x. The iteration scheme is xn+1 = φ(xn).

|xn+1 − x∗ | = |φ(xn) − x∗ |

= |φ(xn) − φ(x∗)|

= |φ′(ξ)| · |xn − x∗ |

≤ 1
2 |xn − x∗ | .

Therefore,
|xn − x∗ | ≤

1
2n
|x0 − x∗ |,

which converges.

(c) For x0 =
π
6 , using part (b), a necessary condition to ensure the required bound is,�� π

6 −
1
4
��

2n
<

10−8

2
,

which is,

n > 1 + log2

[
108

(
π

6
−

1
4

)]
≈ 25.71.

Hence, n = 26 would suffice. For x0 = 20,
20 − 1

4
2n

<
1
4
.

So,
n > 2 + log2 19.75 > 6.

Hence, n = 7 would suffice.

Problem 4. Let matrix A ∈ Rm×n with m ≥ n and r = rank(A) < n, and assume A has the following SVD
decomposition

A = [U1,U2]

[
Σ1 0
0 0

]
[V1,V2]

T = U1Σ1VT
1 ,

where Σ1 is r × r nonsingular and U1 and V1 have r columns. Let σ = σmin(Σ1), the smallest nonzero
singular value of A. Consider the following least square problem, for some b ∈ Rm,

min
x∈Rn
‖Ax − b‖2 .



(a) Show that all solutions x can be written as

x = V1Σ−1
1 UT

1 b + V2z2,

with z2 an arbitrary vector.

(b) Show that the solution x has minimal norm ‖x‖2 precisely when z2 = 0, and in which case,

‖x‖2 ≤
‖b‖2
σ

.

Solution:

(a) Set U = [U1,U2],Σ =
[
Σ1 0
0 0

]
, and V = [V1,V2]

T , then the SV D decomposition of A is A = UΣVT, where

Um×m,Vn×n are orthogonal matrices such that
• UT = U−1 and VT = V−1

• U and V are l2−norm preserving.
As a consequence

‖Ax − b‖2 =


UΣVTx − UUTb




2 =



ΣVTx − UTb




2 .

Let z = VTx = (z1,z2)
T and c = UTb = (c1,c2)

T. Then

‖Ax − b‖2 =




[Σ1 0

0 0

] [
z1
z2

]
−

[
c1
c2

]




2
=





[Σ1z1 − c1
c2

]




2
.

The l2−norm is minimized when the vector z is chosen with z1 = Σ−1
1 c1, z2 arbitrary. Then

x = Vz = V
[
Σ−1

1 c1
z2

]
= (V1,V2)

[
Σ−1

1 UT
1 b

z2

]
= V1Σ−1

1 UT
1 b + V2z2.

(b) Let x̃ = V1Σ−1
1 UT

1 b (i.e., z2 = 0), so z̃ = VTx̃, implies z̃ =
[
Σ−1

1 c1
0

]
, then ‖x̃‖2 = ‖Vz̃‖2 =



Σ−1
1 c1




2.

For any solution x, we have

‖x‖2 = ‖Vz‖2 =




[Σ−1

1 c1
z2

]




2
≥



Σ−1
1 c1




2 = ‖x̃‖2 .

Finally,

‖x̃‖2 =


V1Σ−1

1 UT
1 b




2 =



Σ−1
1 UT

1 b




2 ≤


Σ−1

1 UT
1




2 ‖b‖2 =


Σ−1

1




2 ‖b‖2 =
‖b‖2
σ

.

Problem 5. Consider the family of semi-implicit Runge-Kutta methods

k1 = f (yn + βhk1), k2 = f (yn + hk1 + βhk2),

yn+1 = yn + h
(
( 12 + β)k1 + (

1
2 − β)k2

)
.

(a) Determine the order and the principal part of the local truncation error.

(b) Show that if β > 1
2 , then the negative real axis {z : Re(z) < 0, Im(z) = 0} is contained in the region of

absolute stability of the method.

Solution:



(a) Apply this method to the problem f (y) = λy, we get

k1 = λyn + βλhk1 =⇒ (1 − βλh)k1 = λyn

=⇒ k1 = (1 − βλh)−1λyn

k2 = λyn + λhk1 + βλhk2 =⇒ (1 − βλh)k2 = λyn + (1 − βλh)−1λ2hyn

=⇒ k2 = (1 − βλh)−1λyn + (1 − βλh)−2λ2hyn.

Then the method can be written as

yn+1 = yn + (1 − βλh)−1λhyn + ( 12 − β)(1 − βλh)−2λ2h2yn

=
(
1 + (1 − βz)−1z + ( 12 − β)(1 − βz)−2z2

)
yn (z := λh)

=

(
1 + z

∞∑
i=0

βizi + ( 12 − β)z
2
( ∑∞

i=0 β
izi

)2
)
yn (|zβ| < 1)

=

(
1 + z

(
1 + βz + β2z2 + β3z3 +O(z4)

)
+ ( 12 − β)z

2
(
1 + βz + β2z2 +O(z3)

)2
)
yn

=

(
1 + z + 1

2 z2 +
(
β − β2) z3 +

(
3
2 β

2 − 2β3
)

z4 +O(h5)

)
yn.

Assume yn = y(xn), the exact solution y(xn+1) = ez yn can be written as

y(xn+1) =
(
1 + z +

z2

2
+

z3

6
+

1
24
+O(h5)

)
yn.

Comparing the coefficients of z3, we conclude that
• If β − β2 , 1

6 , i.e. β , 1
2 ±

1
2
√

3
, then the method is second order, and τn ∼ (β − β2 − 1

6 )h
3.

• If β−β2 = 1
6 , i.e. β = 1

2 ±
1

2
√

3
, then 3

2 β
2−2β3 , 1

24 , the method is third order, and τn ∼ ( 32 β
2−2β3− 1

24 )h
4.

(b) It suffices to show if β > 1
2 and z < 0, then

−1 < 1 +
z

1 − βz
+ ( 12 − β)

(
z

1−βz

)2
< 1.

First note β > 1
2 and z < 0 imply z

1−βz < 0, and ( 12 − β)(
z

1−βz )
2 < 0, hence

1 +
z

1 − βz
+ ( 12 − β)

(
z

1−βz

)2
< 1.

Now it remains to show
−1 < 1 +

z
1 − βz

+ ( 12 − β)
(

z
1−βz

)2
.

Observing that − 1
β ≤

z
1−βz (since βz − 1 ≤ βz), we only need to verify

−1 < 1 −
1
β
+ ( 12 − β)

(
− 1
β

)2
.

For β , 0, this is equivalent to
0 < (2β − 1)2,

which certainly holds for β > 1
2 .

Problem 6. Consider the Beam equation from mechanics with boundary conditions that model a cantilever
beam:

u(4) = f (x), x ∈ (0, 1),
u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

(1)



(a) Recast this equation into a variational problem, stating the trial and test function spaces.

(b) Interpret the variational problem as an energy minimization problem, clearly stating the energy
functional. Prove that the variational problem and the energy minimization problems are equivalent.

(c) Develop a CG(3) (cubic continuous Galerkin method) finite element method for this problem.

(d) Prove an a priori error estimate for this method in the energy norm:

‖e‖E =
( ∫ 1

0
(e′′)2dx

) 1
2

,

Where e = u(x) −U(x), in which, u(x) is the exact solution to VP (variational problem), U(x) is the
FEM (finite element method) solution.

(e) Prove an a priori error estimate for this method in the L2 norm:

‖e‖L2 =: ‖e‖ =
( ∫ 1

0
e2dx

) 1
2

.

Solution:

(a) Multiply both sides of u(4) = f (x) with test function v and integrate on [0, 1] to get∫ 1

0
u(4)vdx =

∫ 1

0
f (x)vdx,

integration by parts twice yields

u′′′v
���1
0
− u′′v′

���1
0
+

∫ 1

0
u′′v′′dx =

∫ 1

0
f (x)vdx.

Assume v(0) = 0, v′(0) = 0 so that u′′′v
���1
0
− u′′v′

���1
0
= 0, then∫ 1

0
u′′v′′dx =

∫ 1

0
f (x)vdx.

Define

V = {w :
∫ 1

0
w2 + (w′)2 + (w′′)2dx < ∞, w(0) = w′(0) = 0},

then the Variational Problem(VP) is:
Find u ∈ V , such that ∫ 1

0
u′′v′′dx =

∫ 1

0
f (x)vdx, ∀v ∈ V . (2)

(b) Define the total energy F : V → R as

F(w) = 1
2

∫1
0 (w

′′)2dx −
∫1

0 f (x)wdx,

then the energy minimization problem(MP) is:
Find u ∈ V such that

F(u) ≤ F(w), ∀w ∈ V . (3)

We can prove the equivalence of VP and MP:



(VP⇒MP) Assume u ∈ V such that
∫1

0 u′′v′′dx =
∫1

0 f (x)vdx for all v ∈ V . Let w = u + v ∈ V , then

F(w) = 1
2

∫ 1

0
(u′′ + v′′)2dx −

∫ 1

0
f (x)(u + v)dx

= 1
2

∫ 1

0
(u′′)2dx + 1

2

∫ 1

0
(v′′)2dx +

∫ 1

0
u′′v′′dx −

∫ 1

0
f (x)udx −

∫ 1

0
f (x)vdx

=

(
1
2

∫ 1

0
(u′′)2dx −

∫ 1

0
f (x)udx

)
+

( ∫ 1

0
u′′v′′dx −

∫ 1

0
f (x)udx

)
+ 1

2

∫ 1

0
(v′′)2dx

=F(u) + 0 + 1
2

∫ 1

0
(v′′)2dx

≥F(u),

where the last equality is obtained by the definition of total energy and the fact that u is solution to the VP.
Which implies solution to VP is also solution to MP.

(VP⇐MP) Assume u ∈ V such that F(u) ≤ F(w) for all w ∈ V . Let g(ε) = F(u + εv), here v ∈ V is arbitrary
but fixed, then g′(0) = 0.
Note that

g′(ε) =

∫ 1

0
(u′′ + εv′′)v′′dx −

∫ 1

0
f vdx,

substitute ε = 0 and use the fact that g′(0) = 0, we have∫ 1

0
u′′v′′dx =

∫ 1

0
f vdx, ∀v ∈ V .

Which implies solution to MP is solution to VP.

(c) (i) Partition: Let τh: 0 = x0 < · · · < xM < xM+1 = 1 be a partition of [0, 1], let hj = xj − xj−1 for
j = 1, . . . ,M + 1 be the size of j-th mesh Ij = [xj−1, xj], define h := max1≤ j≤M+1 hj .
(ii) Finite element space: Let V3

h
⊆ V be our finite element space defined as

V3
h := {u ∈ C1(0, 1)| u|Ij is cubic polynomial for all j = 1, . . . ,M + 1, and u(0) = u′(0) = 0}. (4)

(iii) CG(3) Finite Element Method: Find U(x) in V3
h
such that∫ 1

0
U ′′v′′dx =

∫ 1

0
f vdx, ∀v ∈ V3

h .

(d) Let u(x) ∈ V be the exact solution to VP (variational problem), U(x) ∈ V3
h
be the FEM solution, we estiamte

the error e = u −U as follows:

‖u‖2E =
∫ 1

0
(e′′)2 dx

=

∫ 1

0
e′′(u − v + v −U)′′dx (v ∈ V3

h )

=

∫ 1

0
e′′(u − v)′′dx +

∫ 1

0
e′′(v −U)′′dx (by Galerkin orthogonality)

=

∫ 1

0
e′′(u − v)′′dx (by Cauchy inequality)

≤ ‖u −U‖E · ‖u − v‖E .

Hence ‖e‖E ≤ ‖u − v‖ for all v ∈ V3
h
, take v = πhu as interpolation of u, then

‖e‖E ≤ Ch2‖u(4)‖,

where C comes from interpolation error.



(e) Consider the following dual problem

φ(4) = e, φ(0) = φ′(0) = φ′′(1) = φ′′′(1) = 0.

We have

‖e‖2 =
∫ 1

0
eφ(4)dx

=

∫ 1

0
e′′φ′′dx + eφ′′′

���1
0
− e′φ′′

���1
0

(by integration by parts twice)

=

∫ 1

0
e′′φ′′dx (subtract

∫ 1

0
e′′(πhφ)′′dx = 0)

=

∫ 1

0
e′′(φ − πhφ)′′dx

≤ ‖e‖E · ‖φ − πhφ‖E (by the interpolation error and energy norm estimate)

≤C2h4‖u(4)‖ · ‖φ(4)‖ ( since ‖φ(4)‖ = ‖e‖)

=C2h4‖u(4)‖ · ‖e‖ ,

that is, ‖e‖ ≤ C2h4‖u(4)‖.


