S.-T. Yau College Student Mathematics Contests 2022

Probability and Statistics
Solve every problem.
Problem 1. Let {X,,} be a sequence of Gaussian random variables. Suppose that X is a random variable such

that X, converges to X in distribution as n — o0. Show that X is also a (possibly degenerate, i.e., variance zero)
Gaussian random variable.

Solution: Let f,(t) = Eel!*n be the characteristic function of X,, and f(t) = E e!*X be that of X. There are real numbers
up, and o, such that f,(f) = el#nt=9%t*/2_ We have |f,,(t)|* — |f(£)|%, hence e=%%* — |f(¢)|? for all t € R. Since f() # 0if ¢
is close to 0, we must have 02 — o2 for some ¢ € [0, ). Now we have et#nt — f(£)e?*t’ for all t € R and by the dominated
convergence theorem,

t t
; IS Jo — o252/2
nh_pgo L etHnS ds = L f(s)e ds.

The integral on the right side does not vanish if ¢ is close, but not equal to, 0 because the integrand is countinuous and equal
to 1 at s = 0. On the other hand,

t
i,unJ elHnS dg = eltnt 1,
0

This gives
-1

fn = —i(fa(0)eH2 — 1) (Jt eibnS ds)
0
from which we see that that i, must converges to a finite number y. Finally,
Fat) = eH=2"C12 = f(1)
and X must be a (possibly denegerate) Gaussian random variable.

Problem 2. For two probability measures ¢ and v on the real line R, the total variation distance ||u — ||y is
defined as

lle = vlly = sup {u(C) —v(C) : C € B(R)},

where B(R) is the o-algebra of Borel sets on R. Let C(u, v) be the space of couplings of the probability measures
u and v, i.e., the space of R? valued random variables (X, Y) defined on some (not necessarily same) probability
space ({2, F, P) such that the marginal distributions of X and Y are 4 and v, respectively. Show that

It = vlizy = inf(P(X # Y) : (X,Y) € C(,v)}.

For simplicity you may assume that u and v are absolutely continuous with respect to the Lebesgue measure on
R.

Solution: (1) Let C € B(R) and (X,Y) € €(,v). Then
wCO)—v(C)=P{XeCl-P{YeC}I<P{XeC(C YECI<P{X#Y}.
Taking the supremum over C € B(R) and then the infimum over (X, Y) € C(u, v) we obtain
Il —vlry < Inf{P{X # Y} : (X,Y) € C(u,v)}.
(2) Tt is sufficient to a probability measure P € €(u,v) and a set C € B(R) such that for (X, Y) € R? under this probability,

(€)= v(C) =P{X #Y}.



The idea is to construct P such that the probability P {X = Y}is the largest possible under the condition that (X, Y) € C(u, v).
Let m = u + v, or just take m to be the Lebesgue measure if ¢ and v are absolutely continuous with respect to m. We have
u = f1-mandv = f, - mby the Radon-Nikodym theorem. Let f = min{f;, f,} = f1 A f,. Define a probability measure P
on R? by

1
l1—-a

PI(X.Y) € AXB} = j (F130) = FCNF () — FODmldxym(dy) + f f@m(d2).
AxXB A

NB

Here a = [ f(z)m(dz) and we assume that a < 1; otherwise a = 1 and f; = f5, and the case is trivial. Note that the first
part is the product measure of (f; — f)-m and (f, — f) - m) (up to a constant) and the second part is the probability measure
f - mon the diagonal (identified with R) of R2. We have

P{X€A}= J (F1(0) = FCoym(dx) + j f@m(dz) = J F1(Om(dx) = uA).
A A A
Similarly P{Y € B} = »(B), hence (X,Y) € C(u,v). On the other hand,
P{X#Y}= f (1100 - Feym(dx) =1 - a.
R
If we choose C = {f; > f,}, then
U(C)—AC) = j (F10) — f>()m(dx) = f (F10) - fC)m(dx) =1 —a.
C R

This shows that u(C) —v(C) = P{X # Y}.

Problem 3. We throw a fair die repeatedly and independently. Let 7;; be the first time the pattern 11 (two
consecutive 1’s) appears and 7, the first time the pattern 12 (1 followed by 2) appears.

(a) Calculate the expected value E1;.

(b) Which is larger, Et; or E7;,? It is sufficient to give an intuitive argument to justify your answer. You can
also calculate Et, if you wish.

Solution:

(a) Let 7, be the first time the digit 1 appears. At this time, if the next result is 1, then 7y; = 77 + 1; if the next result is
not 1, then the time is 7; + 1 and we have to start all over again. This means

1.

Eny=¢

{ETI + 1}+ % '{ETI +1+4+ ET]I}'

Solving for Ety; we have Ety; = 6(IET; + 1). We need to calculate E7;. The set {r; > n}is the event that that none of
the first n — 1 results is 1, hence F{r; > n} = (5/6)"~! and

[es] ® /5 n-1
ET1=21{712H}=2(6> = 6.
n=1 n=1

It follows that E7;; = 6(6 + 1) = 42.

(b) For either 11 or 12 to occur, we have to wait until the first 1 occurs. After that, if we want 11, the next digit needs
to be 1; otherwise we have to start all over again (i.e., waiting for the next 1). But if we want 12, the next digit needs
to be 2; otherwise, we have to start all over again only if the next digit is 3 to 6 because if the next digit is 1, we have
already have a start on the pattern 12. It follows that the pattern 12 has a slight advantage to occur earlier than 11.
Thus we have E7j, < Ety;.

We can also calculate Ety, directly. Let 7; be as before and let o be the first time a digit not equal to 1 appears. After
71 we wait until the first time a digit not equal to 1 appears. With probability 1/5 this digit is 2; with probability 4/5
this probability is not 2, then we have to start over again. This means that

1 4
ETIZ = g . {E(TI + U)} + g . {E(Tl + O') + Ele}.



Hence Ety, = 5E(t; + 0). We have seen E7; = 6. On the other hand, {o > n} is the event that the first n — 1 digits
are 1, hence ¥{o > n} = (1/6)"*~1 and E o = 6/5. It follows that

ETIZ = S<6+ g) = 36.

Problem 4. Let {X,} be a Markov chain on a discrete state space S with transition function p(x,y), x,y € S.
Suppose that there is a state y, € S and a positive number 6 such that p(x, y,) > 6 for all x € S.

(a) Show that is a positive constant 4 < 1 such that for any two initial distribution x and v,

D P X =y} =P {X; =y} <A )] () —v(y)|.
YES yeSs

(b) Show that the Markov chain has a unique stationary distribution 7 and

Y |Pu X =y} —7(y)| < 2am.
yes

Solution:

(a) Let & = min{p(x,y,) : x € S}. Then 0 < 6 < 1. For any two probability meausres ¢ and v on the state space S, we
have

D P =y =P Xi =} = )

YES YES

3 {(x) - v} p(x,y)' .

X€ES

For the term y = y, we can replace p(x,yo) by p(x,yo) — 0 because 3 o {u(x) —v»(x)} = 1 —1 = 0. After this
replacement, we take the absolute value of every term and exchange the order of summation. Using the fact that
p(x,yo) — 6 > 0 we have

Z [P iX; =y}-P,{X; =y} <
yEeSs

> plxy) - e] S ) = v()\.
YES

XES

The first sum on the right side is 1 — 6 = 4 < 1. It follows that

D P X =y} =Py Xy =} <2 ) [u(x) — v(x)].
yES X€ES

(b) Let upn(x) =P, {X, = x}. Then ppyq =Py, {X; = x}tand up = Py, {X; = x}. By (a),

Z luns1(X) = pp(X)] <2 Z lkn(x) = pp—1 ()]

XES xXeS
It follows that
D ner(0) = () S AT Y () = ()] < 227,

x€E€S X€ES

Since 0 < A < 1, the distributions u,, converges to a distribution 7, which is obviously stationary. We have by the
same argument,

Z [Py {Xpn =yt—7(y)| = Z Py {Xy =y} — P {X, =y} <24
YeSs yES

If o is another stationary distribution, then

D160 =) = ) [Po{Xy =y} — P {X, =y} < 24" — 0.
YES YES

Hence a stationary distribtuion of the Markov chain must be unique.



Problem 5. Consider a linear regression model with p predictors and n observations:
Y=XB+e,

where X, is the design matrix, § is the unknown coefficient vector, and the random error vector e has a mul-
tivariate normal distribution with mean zero and Var(e) = ¢2I,, (62 > 0 unknown and I,, is the identity matrix).
Here rank(X) = k < p, p may or may not be greater than n, but we assume n —k > 1. Let X; = (X1, ..., X,,) be
the first row of X and define

_ =

=

Find the uniformly minimum variance unbiased estimator (UMVUE) of y or prove it does not exist.

Solution: The key points in the solution are the following.

(i) Any least squares estimator, say §, of 8 is independent of 62 = |[Y — XB||2/(n — k).
(ii) x;p is clearly estimable.

(iii) Based on (i) and (ii), we can constructor an unbiased estimator, say 7, of y in terms of B and 62, and consequently we
know the estimator is a function of XTY and |[Y — X||2.

(iv) In fact, (XTY,||Y — XB|?) is a complete and sufficient statistic and we conclude 7 is the UMVUE of y. More details
are given below.

Let § = (XTX)~XTY be a least squares estimator of 8, where (XTX)~ denotes any generalized inverse of XTX. Let 6 = x5,
which is clearly estimable. By Gauss-Markov Theorem, we know 8 =: x;f is the best linear unbiased estimator of 8. For
the unbiased estimator 62 = |Y — Y||2/(n — k), we know (n — k)42/0? has x2_, distribution, which belongs to the Gamma

family. Thus, it is readily seen that E(1/8) = C/o, where C is a known constant (C = Vn — kF("‘Tk‘l)/(\/EF("T‘k))).

Letj = 8/(C8). Let H = X(XTX)~XT denote the projection matrix. Clearly, (I,—H)X = 0, which implies Cov((XTX)~XTY, (I,,—
H)Y) = 0. Together with the Gaussian error assumption, we know (X7X)~XTY and (I,, — H)Y are independent. It follows
that § (any choice) and 62 are independent. This leads to the unbiasedness of 7.

With elementary simplifications, based on basic exponential family properties, we see that T = (XTY, |[Y—Y]||?) is a complete
and sufficient statistic. We conclude that y is indeed unbiased and a function of a complete and sufficient statistic, and hence
it must be the UMVUE of y.

Problem6. LetXj,...,X,,, beindependent random variableswith X; ~ N( 6;,i2),1 < i < 2022. For estimating
the unknown mean vector & € R2922, consider the loss function L(6,d) = Zizgfz(di — 6;)%/i%. Prove that X =
(X3, ..., X5022) is @a minimax estimator of 6.

Recall: If Y|u ~ N(u,0?) and ju ~ N(uo,03) then p|Y =y ~ N(”‘)/U‘Z’H/GZ 1 )

1/03+1/02 * 1/0}+1/0?

Solution: We show X, as an equalizer (constant risk), achieves the limit of Bayes risks under certain priors. First, consider
independent priors 6; ~ N(0, 72),1 < i < 2022. Then, the Bayes estimator §; has the i-th component (estimator of &;)

X;/i? . s 2022, o 1
SVEEsVich The associated Bayes risk is R-(6;) = ;" i TEsTE

R.(6;) — legz 1 = 2022, which is identical to the Bayes risk of X. This implies that N(0, 72) with 7 — oo gives a least

favorable sequence of priors and X is minimax.

being the posterior mean E;(6;|X) = Clearly, as 7 — oo,



