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Mathematical Physics

1. (Classical Mechanics)

Consider the motion of a particle of mass m in an attractive central po-
tential of the form

V (r) = αrk, (1)

where k and α are real constants of the same sign (both positive or both
negative).

(a) Write down the Lagrangian using polar coordinates (r, φ).

(b) Using conservation of the angular momentum, reduce the problem of
determining the radial motion to an effective one-dimensional prob-
lem (write down the effective Lagrangian).

(c) Determine the radius and period of the circular orbits.

(d) For which values of k is the circular orbit stable?

(e) Assuming that the circular orbit is stable, consider a small pertur-
bation around it. Find the period of the small oscillations. In the
approximation of small oscillations, for which values of k will the
orbit close?

(f) Go back to the full 2d problem for r and φ (the polar coordinates in
the plane of the orbit). Eliminate the time dependence and write a
diffferential equation for the orbit.

2. (Quantum mechanics)

Consider a 1-dim quantum-mechanical harmonic oscillator with mass m
and resonance frequency ω. The oscillator initially (at t → −∞) is in its
ground state. It is then subjected to a transient perturbation ∆H = F (t)x
with F (t→ ±∞)→ 0.

(a) Write down the Hamiltonian Ĥ of the perturbed oscillator described
above in terms of the usual ladder operators â and â†, and solve
their equations of motion in the Heisenberg picture. Show that the
Hamiltonian at t→ ±∞ takes the form

Ĥ = ~ω(â†±∞â±∞ + 1/2), (2)

and determine the relation between a+∞ and a−∞.

(b) At t→ ±∞, the ladder operators act on the state |n±∞〉 = (1/
√
n!)(â†±∞)n|0±∞〉.

Here |0±∞〉 denote the vacuum with respect to â±∞ and â†±∞.

Determine the probabilities |cn|2 that the oscillator has undergone a
transition from the initial ground state to the n-th excited state at
the end of the time evolution.
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(c) What is the expectation value of the energy at the end of the time
evolution?

(d) Now assume that F (t) = F0e
−t2/(2σ2

t ), with F0 = η~ω/l where η
is a dimensionless parameter, and l =

√
~/(mω) is the harmonic-

oscillator length.

For short pulses with σtω � 1, determine the maximum pulse strength
η for which less that 1% of the population gets lost from the ground
state. Show explicitly that in the limit σtω � 1, losses can be sup-
pressed for any given value of η.

3. (Electromagnetism)

Consider an ohmic metal with high (but not infinite) conductivity σ and
magnetic permeability µ = 1 in Heaviside-Lorentz units (µ = µ0 in SI
units).

(a) Show that for harmonic time dependence, and high conductivity σ �
ω ( σε0 � ω in SI units), that damped wave-like solutions propagating
in z-direction in the metal take the approximate form

H(t, z) = Hce
−iωt+ikcz (3)

where

kc =
1 + i√

2

√
σω

c
(4)

in Heaviside-Lorentz units, or

kc =
1 + i√

2

√
σω/ε0
c

(5)

in SI units.

(b) The electric field obeys a similar equation, E(t, z) = Ece
−iωt+ikcz.

Use the Maxwell equations to express the amplitude of the electric
field Ec in terms of the magnetic field Hc.

(c) Now consider a linearly polarized plane wave in vacuum of frequency
ω, which is normally incident upon a semi-infinite metal block with
infinite conductivity as shown below.

When the metal has infinite conductivity, the amplitude of the re-
flected wave equals the amplitude of the incident wave, but the po-
larization of the reflected wave is inverted. Explain this fact using
the appropriate boundary conditions.

(d) Now consider the same reflection problem as in part 3c, but this
time the metal has a large (but finite) conductivity σ. Determine the
electric and magnetic fields in the metal to leading order in ω/σ. Let
the amplitude of the incident wave be EI .
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4. (Statistical Mechanics)

Consider the Ising model on N spins σi = ±1 in an external magnetic field
h. Within the mean field approximation, its Hamiltonian can be written
as

HMF =
1

2
NJm2 − (Jm+ h)

∑
i

σi, (6)

where the coordination number of the lattice has been absorbed into the
coupling constant J and m is the magnetization.

The magnetization, specific heat and magnetic susceptibility are defined,
respectively, as

m =
∂f

∂h
, C =

∂U

∂T
, χ =

∂m

∂h
, (7)

where T is the temperature, U the internal energy, and f the free energy
per site.

(a) Derive the (mean field) partition function following from HMF and
hence calculate the free energy of the system.

(b) Derive the constraint on magnetization m, and graphically solve it
for h = 0. Discuss the physical nature of the various solutions as a
function of the temperature T . Identify a critical temperature Tc in
terms of the system parameters, and discuss its physical meaning.

(c) Assuming β(Jm+h)� 1, derive the expression for the dependence of
the magnetization, the specific heat and the magnetic susceptibility
on the quantity

t =
T − Tc
Tc

, (8)

where Tc is the critical temperature, and thereby determine the mean-
field critical exponents αc, βc, and γc which are defined through the
relations

m ∼ |T−Tc|βc , C ∼ |T−Tc|−αc , χ =
∂m

∂h
|h=0 ∼ |T−Tc|−γc . (9)

For the calculation of the specific heat, note that, within the mean
field approximation near the critical point, the internal energy is
U ∝ Jm2.
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5. (General Relativity)

Let ds2 = −(dx0)2 +
∑n
i=1(dxi)2 be the Minkowski metric of R1,n. The

de Sitter space dSn is the submanifold of R1,n defined by the following
equation

−(x0)2 +

n∑
i=1

(xi)2 = α2, (10)

where α is a nonzero real constant. Define the static coordinates (t, r, z2, · · · , zn)
as

x0 =
√
α2 − r2 sinh (t/α) ,

x1 =
√
α2 − r2 cosh (t/α) ,

xi =rzi 2 ≤ i ≤ n,

(11)

where zi’s are coordinates of an (n − 2)-sphere with radius 1 in Rn−1
(
∑n
i=2(zi)2 = 1).

(a) Show that (t, r, z2, · · · , zn) is a set of local coordinates of dSn.

(b) Compute the metric on dSn induced from the Minkowski metric of
R1,n (Hint: you may use the above coordinates).

(c) Let n = 3, compute the Ricci tensor Rµν and scalar curvature R of
dS3. Is dS3 an Einstein metric?

(d) Are ∂t and ∂φ killing vector fields in static coordinates when n = 3?
Prove your answer.

6. (Quantum Field Theory)

Consider the Lagrangian of the Yukawa theory between a real scalar field
φ and a Dirac spinor field ψ

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 + ψ̄(i/∂µ −M)ψ − igψ̄γ5ψφ, (12)

(a) Find all divergences in 1-loop self-energy graphs of the scalars φ.
What are the correct counter-terms to cancel this divergences?

(b) Find all divergences in 1-loop self-energy graphs of the scalars ψ.
What are the correct counter-terms to cancel this divergences?

(c) Are there divergences which can not be renormalized in this theory?
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