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Algebra and Number Theory
Solve every problem.

Problem 1.

(a) Let 𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + ⋯ + 𝑎1𝑥 + 𝑎0 ∈ 𝑅[𝑥] be a polynomial over an integral domain 𝑅. Let 𝐾 denote the

fraction field of 𝑅. Suppose 𝑎/𝑏 ∈ 𝐾 is a root of 𝑝(𝑥), where 𝑎, 𝑏 ∈ 𝑅 and are relatively prime. Then, show
that 𝑎|𝑎0 and 𝑏|𝑎𝑛.

(b) Prove that 𝐐(√2,√3) = 𝐐(√2 + √3).

Solution:

(a) Easy.

(b) It suffices to show 𝐐(√2,√3) ⊂ 𝐐(√2 + √3).
Let 𝛼 = √2 + √3. It is a root of

𝑝(𝑥) = 𝑥4 − 10𝑥2 + 1.

By (a), 𝑝(𝑥) has no rational roots. We claim that 𝑝(𝑥) is irreducible over 𝐙. Otherwise, 𝑝(𝑥) = (𝑎 + 𝑏𝑥 + 𝑐𝑥2)(𝑑 +

𝑒𝑥+𝑓𝑥2). A direct computation will yield such a decomposition is impossible. Hence, 𝑝(𝑥) is a minimal polynomial
𝛼 over 𝐐. As 𝐐(𝛼) is a vector subspace of 𝐐(√2,√3), we obtain

4 = dim𝐐(𝛼) ≤ dim𝐐(√2,√3) ≤ 4.

This implies the statement.

Problem 2. Let 𝑅 be an integral domain with the fraction field 𝐾. An 𝑅-module 𝑃 is projective if there is an
𝑅-module𝑄 such that 𝑃⊕𝑄 ≅ 𝐹 for some free 𝑅-module 𝐹. A fractional ideal𝐴 is an 𝑅-submodule of 𝐾 such that
𝐴 = 𝑑−1𝐼 for some ideal 𝐼 of 𝑅 and a nonzero element 𝑑 ∈ 𝑅. A fractional ideal 𝐴 is called invertible if 𝐴𝐵 = 𝑅

for some fractional ideal 𝐵.

Show that an invertible fractional ideal 𝐴 is a projective 𝑅-module.

Solution: Assume that 𝐴 is an invertible fractional ideal. Let 𝐴−1 its inverse. Then

𝑎1𝑎
′
1 +⋯+ 𝑎𝑛𝑎

′
𝑛 = 1

for some 𝑎1,… , 𝑎𝑛 ∈ 𝐴 and 𝑎′1,… , 𝑎′𝑛 ∈ 𝐴′ since𝐴𝐴−1 = 𝑅. Let 𝑆 be a free 𝑅-module of rank 𝑛, say, generated by 𝑦1,… , 𝑦𝑛.
Define 𝜑 ∶ 𝑆 → 𝐴 by 𝜑(𝑦𝑖) = 𝑎𝑖 and 𝜓 ∶ 𝐴 → 𝑆 by 𝜑(𝑐) = 𝑐(𝑎′1𝑦1 +⋯𝑎′𝑛𝑦𝑛). This makes sense because 𝑐𝑎′𝑖 ∈ 𝑅. Obviously,
𝜑𝜓 = 𝑖𝑑𝐴, hence 𝐴 is a direct summand of 𝑆. In other words, 𝐴 is a projective module.

Problem 3. Give a direct proof that the Lie algebra 𝔰𝔩(4, 𝐂) is isomorphic to the Lie algebra 𝔰𝔬(6, 𝐂). (You should
construct a Lie algebra homomorphism and prove that it is an ismorphism; you should not use Dynkin diagrams
or the classification theory of simple Lie algebras.)

Solution: We have the representation 𝔰𝔩(4, 𝐂) → 𝔤𝔩(𝑊) where 𝑊 = ∧2𝐂4. Let 𝑒1, 𝑒2, 𝑒3, 𝑒4 be the standard basis of 𝐂4.
Then 𝑒1 ∧ 𝑒2 ∧ 𝑒3 ∧ 𝑒4 gives an identification ∧4𝐂4 ≅ 𝐂. We define a complex symmetric bilinear form 𝑆 ∶ 𝑊 ×𝑊 → 𝐂 by

𝑆(𝜃, 𝜏) = 𝜃 ∧ 𝜏 ∈ ∧4𝐂4 ≅ 𝐂

for 𝜃, 𝜏 ∈ 𝑊. By writing out an explicit orthogonal basis, you can show that 𝑆 is non-degenerate. Then, one checks that for
any 𝐴 ∈ 𝔰𝔩(4, 𝐂), we have

𝑆(𝐴𝜃, 𝜏) + 𝑆(𝜃, 𝐴𝜏) = 𝐴𝜃 ∧ 𝜏 + 𝜃 ∧ 𝐴𝜏 = 𝐴(𝜃 ∧ 𝜏) = 0.



Note here that 𝔰𝔩(4, 𝐂) acts trivially on ∧4𝐂4.

Hence, we obtain a Lie algebra homomorphism 𝔰𝔩(4, 𝐂) → 𝔰𝔬(6, 𝐂).This must be an isomorphism since both Lie algebras
have the same dimension and 𝔰𝔩(4, 𝐂) is simple.

Problem 4. Let𝐴 = 𝒪𝐾 be the ring of integers of a number field𝐾. Given a nonzero ideal 𝔞 ⊂ 𝐴 and an arbitrary
nonzero element 𝑎 ∈ 𝔞, show that there exists 𝑏 ∈ 𝔞 such that 𝑎 and 𝑏 generate 𝔞 (in particular, every ideal is
2-generated).

Solution: Since 𝒪𝐾 is a Dedekind domain, every nonzero ideal of it has a unique factorization as a product of nonzero
prime ideals. Write 𝑎𝐴 = 𝔭

𝑛1
1 ⋯𝔭

𝑛𝑟
𝑟 (𝔭𝑖’s are distinct nonzero prime ideals of 𝐴, 𝑛𝑖 ∈ 𝐍). Since 𝑎 ∈ 𝔞, we have 𝔞 divides 𝑎𝐴,

so that 𝔞 = 𝔭
𝑚1
1 ⋯𝔭

𝑚𝑟
𝑟 with 0 ≤ 𝑚𝑖 ≤ 𝑛𝑖. For each 𝑖, pick 𝑥𝑖 ∈ 𝔭

𝑚𝑖

𝑖 ⧵ 𝔭
𝑚𝑖+1
𝑖 . Since 𝔭𝑚𝑖+1

𝑖 and 𝔭𝑚𝑗+1

𝑗 are coprime when 𝑖 ≠ 𝑗,
by the Chinese Remainder Theorem, the system of congruences 𝑏 ≡ 𝑥𝑖(mod 𝔭

𝑚𝑖+1
𝑖 ), 1 ≤ 𝑖 ≤ 𝑟 has a solution 𝑏 ∈ 𝐴.

By the congruence relation above, we see that 𝑏 ∈ 𝔭
𝑚𝑖

𝑖 ⧵ 𝔭
𝑚𝑖+1
𝑖 as well. So for each 1 ≤ 𝑖 ≤ 𝑟, the order of 𝔭𝑖 in the prime

ideal factorization of 𝑏𝐴 is exactly𝑚𝑖. In other words

𝑏𝐴 = 𝔭
𝑚1
1 ⋯𝔭

𝑚𝑟
𝑟 𝔮

𝑘1
𝑙 ⋯𝔮

𝑘𝑙
𝑙 , 𝑚𝑖, 𝑘𝑗 > 0,

where 𝔮𝑗’s are nonzero prime ideals different from those 𝔭𝑖’s (if they exist). Therefore

𝑎𝐴 + 𝑏𝐴 = 𝔭
min{𝑚1,𝑛1}
1 ⋯𝔭

min{𝑚𝑟,𝑛𝑟}
𝑟 𝔮

min{0,𝑘1}
𝑙 ⋯𝔮

min{0,𝑘𝑙}
𝑙 = 𝔭

𝑚1
1 ⋯𝔭

𝑚𝑟
𝑟 = 𝔞,

as desired.

Problem 5. Let 𝑝 be a prime number and 𝜁𝑝 be a primitive 𝑝-th root of unity. Let 𝐾 = 𝐐(𝜁𝑝).

(a) Show that Φ𝑝 = ∑
𝑝−1

𝑖=0
𝑋 𝑖 is the minimal polynomial of 𝜁𝑝 over 𝐐.

(b) Compute the trace Tr𝐾/𝐐(1 − 𝜁𝑝) and the norm𝒩𝐾/𝐐(1 − 𝜁𝑝).

(c) Show that (1 − 𝜁𝑝)𝒪𝐾 ∩ 𝐙 = 𝑝𝐙 and deduce that for all 𝑦 ∈ 𝒪𝐾, we have

Tr𝐾/𝐐(𝑦(1 − 𝜁𝑝)) ∈ 𝑝𝐙.

(d) Determine explicitly the ring of integers of 𝐾.

Solution:

(a) Consider 𝑔(𝑋) = Φ𝑝(𝑋 + 1) = (𝑋 + 1)𝑝−1 +⋯+ 𝑋 + 1. Then 𝑔(𝑋) = 1
𝑋
[(𝑋 + 1)𝑝 − 1] = ∑

𝑝−1

𝑖=0
(
𝑝
𝑖+1)𝑋

𝑖. Notice that
for all 0 ≤ 𝑖 ≤ 𝑝 − 2, we have 𝑝 ∣ (

𝑝
𝑖+1), but 𝑝

2 ∤ (𝑝1) = 𝑝. By the Eisenstein’s criterion, 𝑔(𝑋) is irreducible over 𝐐, so
is Φ𝑝(𝑋) = 𝑔(𝑋 − 1). Since 𝜁𝑝 is a root of 𝑋𝑝 − 1 = (𝑋 − 1)Φ𝑝(𝑋) but not of (𝑋 − 1), we have Φ𝑝(𝜁𝑝) = 0. Therefore,
Φ𝑝(𝑋), being monic, is the minimal polynomial of 𝜁𝑝 over 𝐐.

(b) For each 1 ≤ 𝑖 ≤ 𝑝−1, we have 𝜁𝑖𝑝 ∈ 𝐾 is also a root of 𝑋𝑝−1 = (𝑋−1)Φ𝑝(𝑋) but not of (𝑋 −1), we haveΦ𝑝(𝜁
𝑖
𝑝) = 0.

Thus 𝐾/𝐐 is a Galois extension whose Galois group is Gal(𝐾/𝐐) = {𝜎𝑖; 𝜎𝑖(𝜁𝑝) = 𝜁𝑖𝑝, 1 ≤ 𝑖 ≤ 𝑝 − 1}. So

Tr𝐾/𝐐 =

𝑝−1

∑
𝑖=1

(1 − 𝜁𝑖𝑝) = (𝑝 − 1) −

𝑝−1

∑
𝑖=1

𝜁𝑖𝑝 = (𝑝 − 1) − (Φ𝑝(𝜁𝑝) − 1) = (𝑝 − 1) − (−1) = 𝑝,

and

𝒩𝐾/𝐐 =

𝑝−1

∏
𝑖=1

(1 − 𝜁𝑖𝑝) = Φ𝑝(1) =

𝑝−1

∑
𝑖=0

1𝑖 = 𝑝.

(c) Notice that 𝜁𝑝 is a root of a monicΦ𝑝 ∈ 𝐙[𝑋], so 𝜁𝑝 is integral over 𝐙. For each𝑚 ∈ 𝐙, let 𝑧 = 𝑚∏
𝑝−1

𝑖=2
(1−𝜁𝑖𝑝) ∈ 𝒪𝐾.

Then 𝑧(1 − 𝜁𝑝) = 𝑚∏
𝑝−1

𝑖=1
(1 − 𝜁𝑖𝑝) = 𝑚𝑝. Thus 𝑝𝐙 ⊂ (1 − 𝜁𝑝)𝒪𝐾 ∩ 𝐙. On the other hand, suppose 𝑧 ∈ 𝒪𝐾 satisfies



𝑚 = 𝑧(1 − 𝜁𝑝) ∈ 𝐙. Taking norms on both sides, we get𝑚𝑝 = 𝒩𝐾/𝐐(𝑧)𝑝. Since 𝑧 is integral,𝒩𝐾/𝐐(𝑧) ∈ 𝐙, we have
𝑝 ∣ 𝑚𝑝, so 𝑝 ∣ 𝑚. Thus (1 − 𝜁𝑝)𝒪𝐾 ∩ 𝐙 ⊂ 𝑝𝐙. As a consequence, (1 − 𝜁𝑝)𝒪𝐾 ∩ 𝐙 = 𝑝𝐙.
Now take any 𝑦 ∈ 𝒪𝐾. Observe that for each 1 ≤ 𝑖 ≤ 𝑝 − 1, we have

𝜎𝑖(𝑦(1 − 𝜁𝑝)) = 𝜎𝑖(𝑦)(1 − 𝜁𝑖𝑝) = (1 − 𝜁𝑝)(1 + 𝜁𝑝 +⋯+ 𝜁𝑖−1𝑝 )𝜎𝑖(𝑦) ∈ (1 − 𝜁𝑝)𝒪𝐾,

so Tr𝐾/𝐐(𝑦(1 − 𝜁𝑝)) = ∑
𝑝−1

𝑖=1
𝜎𝑖(𝑦(1 − 𝜁𝑝)) ∈ (1 − 𝜁𝑝)𝒪𝐾 as well. On the other hand, 𝑦(1 − 𝜁𝑝) ∈ 𝒪𝐾, so its trace is

in 𝐙. Therefore Tr𝐾/𝐐(𝑦(1 − 𝜁𝑝)) ∈ (1 − 𝜁𝑝)𝒪𝐾 ∩ 𝐙 = 𝑝𝐙.

(d) Let 𝑦 = 𝑏0 + 𝑏1𝜁𝑝 +⋯ + 𝑏𝑝−1𝜁
𝑝−1
𝑝 ∈ 𝒪𝐾 where 𝑏𝑖 ∈ 𝐐. Notice that for any 1 ≤ 𝑖 ≤ 𝑝 − 1, 𝜁𝑖𝑝 is a conjugate of 𝜁𝑝

over 𝐐, so
Tr𝐾/𝐐(𝜁𝑖𝑝) = Tr𝐾/𝐐(𝜁𝑝) = 𝜁𝑝 + 𝜁2𝑝 +⋯+ 𝜁

𝑝−1
𝑝 = −1.

Set 𝑏𝑝 = 𝑏0, then for any 1 ≤ 𝑙 ≤ 𝑝 − 1, we have

𝑝𝐙 ∋ Tr𝐾/𝐐((𝜁𝑙𝑦)(1 − 𝜁𝑝)) =

𝑝−1

∑
𝑖=0

𝑏𝑖 Tr𝐾/𝐐(𝜁𝑖+𝑙𝑝 − 𝜁𝑖+𝑙+1𝑝 )

= 𝑏𝑝−𝑙 Tr𝐾/𝐐(1 − 𝜁𝑝) + 𝑏𝑝−𝑙−1 Tr𝐾/𝐐(𝜁
𝑝−1
𝑝 − 1)

= 𝑝(𝑏𝑝−𝑙 − 𝑏𝑝−𝑙−1),

which implies that 𝑏𝑝−𝑙 − 𝑏𝑝−𝑙−1 ∈ 𝐙. Thus 𝑏𝑖 − 𝑏0 ∈ 𝐙 for all 1 ≤ 𝑖 ≤ 𝑝 − 1. Notice that

𝑦 −

𝑝−1

∑
𝑖=1

(𝑏𝑖 − 𝑏0)𝜁
𝑖
𝑝 = 𝑏0(1 + 𝜁𝑝 +⋯+ 𝜁

𝑝−1
𝑝 ) = 0,

so 𝑦 = ∑
𝑝−1

𝑖=1
(𝑏𝑖 − 𝑏0)𝜁

𝑖
𝑝 ∈ 𝐙[𝜁𝑝]. Therefore 𝒪𝐾 = 𝐙[𝜁𝑝].

Problem 6. Let 𝜃 ∈ 𝐐 be a root of the polynomial 𝑓(𝑋) = 𝑋3 + 12𝑋2 + 8𝑋 + 1. Let 𝐾 = 𝐐(𝜃).

(a) Let 𝑔(𝑋) = 𝑋3 + 𝑝𝑋 + 𝑞 ∈ 𝐙[𝑋]. Compute the discriminant disc(𝑔) of 𝑔(𝑋) in terms of 𝑝, 𝑞.

(b) Show that 𝑓(𝑋) is irreducible over 𝐐.

(c) Compute the discriminant 𝑑𝐾(1, 𝜃, 𝜃2). Please provide necessary details.

(d) For any arbitrary number field 𝐹 of degree 𝑛, let 𝑎1, 𝑎2,… , 𝑎𝑛 ∈ 𝒪𝐹. Find and verify a sufficient condition
in terms of the discriminant 𝑑𝐹(𝑎1,… , 𝑎𝑛) that the 𝑎1,… , 𝑎𝑛 form an integral basis of 𝐹.

(e) Write down an explicit integral basis of 𝐾 in terms of 𝜃 by using the above sufficient condition you have
found. Please justify your arguments.

Solution:

(a) Let 𝛼1, 𝛼2, 𝛼3 ∈ 𝐐 be three roots of 𝑔, then by Viète’s theorem

𝛼1𝛼2 + 𝛼2𝛼3 + 𝛼3𝛼1 = 𝑝, 𝛼1𝛼2𝛼3 = −𝑞.

According to the theory of symmetric polynomials, disc(𝑔) = [(𝛼1 − 𝛼2)(𝛼2 − 𝛼3)(𝛼3 − 𝛼1)]
2 can be expressed as a

polynomial 𝐻 of 𝑝, 𝑞. For any 𝜆 ∈ 𝐐, consider

𝑔𝜆(𝑋) = (𝑋 − 𝜆𝛼1)(𝑋 − 𝜆𝛼2)(𝑋 − 𝜆𝛼3) = 𝑋3 + 𝜆2𝑝𝑋 + 𝜆3𝑞𝑋,

we obtain that 𝐻(𝜆2𝑝, 𝜆3𝑞) = 𝜆6𝐻(𝑝, 𝑞). Thus 𝐻(𝑝, 𝑞) has an expression such that each of its monomials has shape
𝑟𝑖,𝑗𝑝

𝑖𝑞𝑗 with 𝑟𝑖,𝑗 ∈ 𝐐 and 2𝑖 + 3𝑗 = 6. Thus (𝑖, 𝑗) = (3, 0) or (0, 2), which means disc(𝑔) = 𝑎𝑝3 + 𝑏𝑞2 for some fixed
𝑎, 𝑏 ∈ 𝐐.
Let 𝑔(𝑋) = 𝑋3 − 𝑋 = 𝑋(𝑋 − 1)(𝑋 + 1), we have

𝑎 ⋅ (−1)3 + 𝑏 ⋅ 02 = [(0 − 1)(0 − (−1))(1 − (−1))]2 = 4 ⇒ 𝑎 = −4.



Let 𝑔(𝑋) = 𝑋3 − 1 = 𝑋(𝑋 − 𝜔)(𝑋 − 𝜔−1), where 𝜔 = 𝑒2𝜋𝑖/3, then we have

𝑎 ⋅ 03 + 𝑏 ⋅ (−1)2 = [(1 − 𝜔)(1 − 𝜔−1)(𝜔 − 𝜔−1)]
2
= (1 − 𝜔)6 = (√−3𝑒2𝜋𝑖/6)

6
= −27 ⇒ 𝑏 = −27.

Therefore disc(𝑔) = −(4𝑝3 + 27𝑞2).

(b) Suppose 𝑓 is reducible over 𝐐, then it has a factor 𝑋 − 𝜏 where 𝜏 ∈ 𝐐. Since 𝜏 is a root of 𝑓(𝑋), a monic integer
polynomial, we have 𝜏 ∈ 𝒪𝐾. Thus 𝜏 ∈ 𝐐 ∩ 𝒪𝐾 = 𝐙. Notice that 𝜏(𝜏2 + 12𝜏 + 8) = −1, we obtain that 𝜏 ∣ 1. Thus
𝜏 = ±1. But a direct computation shows that neither of ±1 is a root of 𝑓(𝑋), a contradiction.

(c) By (b) we see that 𝑓(𝑋) is the minimal polynomial of 𝜃 over 𝐐. Let 𝜃1 = 𝜃, 𝜃2, 𝜃3 be the three roots of 𝑓(𝑋). Then

𝑑𝐾(1, 𝜃, 𝜃
2) = det(

1 𝜃1 𝜃21
1 𝜃2 𝜃22
1 𝜃3 𝜃23

)

2

= [(𝜃1 − 𝜃2)(𝜃2 − 𝜃3)(𝜃3 − 𝜃1)]
2

= [((𝜃1 + 4) − (𝜃2 + 4))((𝜃2 + 4) − (𝜃3 + 4))((𝜃3 + 4) − (𝜃1 + 4))]
2

= disc(𝑓(𝑋 − 4))

= disc(𝑋3 − 40𝑋 + 97)

= − [4 ⋅ (−40)3 + 3 ⋅ 972]

= 1957.

(d) We claim that if 𝑑𝐹(𝑎1,… , 𝑎𝑛) is a square free integer, then 𝑎1,… , 𝑎𝑛 is an integral basis of 𝐹. To see this, fix an
integral basis 𝜔1,… , 𝜔𝑛 of 𝐹. Then for any 1 ≤ 𝑖 ≤ 𝑛, there exist 𝑡𝑖𝑗 ∈ 𝐙 such that 𝑎𝑖 = ∑

𝑛

𝑖=1
𝑡𝑖𝑗𝜔𝑗. Let 𝑇 =

(𝑡𝑖𝑗)1≤𝑖,𝑗≤𝑛 ∈ 𝑀𝑛(𝐙). Then linear algebra gives the following relation of integers

𝑑𝐹(𝑎1,… , 𝑎𝑛) = (det𝑇)2𝑑𝐹(𝜔1,… , 𝜔𝑛).

Since the left hand side is square free, we have det𝑇 = ±1. This implies that 𝑇−1 has integer entries as well, thus
𝜔1,… , 𝜔𝑛 can be written as 𝐙-linear combinations of 𝑎1,… , 𝑎𝑛. Therefore, 𝑎1,… , 𝑎𝑛 is an integral basis of 𝐹.

(e) Since 𝑑𝐾(1, 𝜃, 𝜃2) = 1957 = 19 ⋅ 103 is square free, 1, 𝜃, 𝜃2 is an integral basis of 𝐾 by (d).


