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1 Problems

1. (a) A symmetry transformation in quantum mechanics is represented by
a unitary or anti-unitary operator acting on a Hilbert space. The
time reversal transformation Θ relates the wave function at time t to
time −t. Prove: Θ is an anti-unitary operator.

(5 points) solution: We have the evolution operator U(t, 0) = e−iHt/h̄,
and so we have

|ψ, t〉 = U(t, 0)|ψ, 0〉

Here |ψ, 0〉 is the state at t = 0. If a system is invariant under
time-reversal symmetry, then its evolution operator satisfies

Θ−1U(t, 0)Θ = U†(t, 0)

Infinitesimally, we have

(1− itH/h̄)Θ = Θ(1 + itH/h̄)

and
(−itH/h̄)Θ = Θ(itH/h̄)

We have: if Θ is a Unitary operator, then HΘ = −ΘH, this is con-
tradictory as if |n〉 is an energy state with eigenvalue En, then Θ|n〉
would be an energy eigenstate with energy −En, this is contradictory
even for the free particle. So Θ would be an anti-Unitary operator.

(b) Consider state vector |ψ〉 for a quantum system. A time reversal
transformation is represented by an anti-unitary operator Θ. We now
consider position space wavefunction ψ(x) = 〈x|ψ〉, and Θ|x〉 = |x〉.
Prove: the position space wave function for Θ|ψ〉 is

ψ(x)∗

(5 points) solution: The state |ψ〉 can be expanded using the posi-
tion eignenstate |x〉 as follows

|ψ〉 =

∫
dx|x〉〈x|ψ〉

Then we have (using the anti-unitary property of Θ)

Θ|ψ〉 = Θ(

∫
dx|x〉〈x|ψ〉) =

∫
dx(〈x|ψ〉)∗Θ|x〉 =

∫
dx(〈x|ψ〉)∗|x〉

so Θ|ψ〉 has position wave function 〈x|ψ〉)∗ = ψ(x)∗.
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(c) A one dimensional quantum system is invariant under time reversal
transformation, and so its Hamiltonian satisfies ΘH = HΘ. If an
energy eigenstate |ψ〉 has no degeneracy, Prove: it is possible to take
the position space energy eigenfunction to be real:

ψ(x)∗ = ψ(x)

(5 points) solution: For an energy eigenstate |n〉, so H|n〉 = En|n〉.
Then Θ|n〉 is an energy eigenstate with energy En. Since En has no
denegeracy, |n〉 and Θ|n〉 has to be linearly dependent, namely there
is a complex number λ such that

Θ|n〉 = λ|n〉

Since the wave function for Θ|n〉 is ψ(x)∗, we have the equation

ψ∗(x) = λψ(x)

Since the wave function has the freedom of multiplying a complex
number with |λ| = 1, we can use this freedom to choose the wave
function to be real.

2. Consider following quantum Hamiltonian:

H0 =
p2

1

2m
+

1

2
mω2x2

1 +
p2

2

2m
+

1

2
mω2x2

2

This is the Hamiltonian for two decoupled harmonic oscillators.

(a) Calculate the eigenstates and eigenvalues for H0 (an energy eigen-
state could be labeled as |n1, n2〉).
(5 points) Solution: Define operators

a1 =

√
mw

2h̄
x1 + i

√
1

2h̄wm
p1 , a†1 =

√
mw

2h̄
x1 − i

√
1

2h̄wm
p1,

a2 =

√
mw

2h̄
x2 + i

√
1

2h̄wm
p2, a†2 =

√
mw

2h̄
x2 − i

√
1

2h̄wm
p2

they satisfy the nontrivial commutation relation

[a1, a
†
1] = 1, [a2, a

†
2] = 1

The Hamiltonian becomes

H0 = h̄w(a†1a1 + a†2a2 + 1)

The eigenstates are found by starting with a state |0, 0〉 which satisfies
the condition

a1|0, 0〉 = 0, a2|0, 0〉 = 0
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An energy eigenstate is formed by the state

|n1, n2〉 =
(a†1)n1

√
n1!

(a†2)n2

√
n2!
|0, 0〉

and the energy is given as

(n1 + n2 + 1)h̄ω

(b) Assume the creation and annihilation operators for two harmonic

oscillators are a†i , ai, i = 1, 2. Define following operators

J+ = a†1a2, J− = a†2a1, Jz =
1

2
(a†1a1 − a†2a2)

i. Prove that: [Jz, J±] = ±J±, [J+, J−] = 2Jz.
(5 points) Solution: Using the commutation relation

[a1, a
†
1] = 1, [a2, a

†
2] = 1

to directly verify the commutation relation.

ii. Consider one eigenvalue En of H0, (here n1 + n2 = n). Prove
that: all eigenstates of En form an irreducible representation of
su(2) Lie algebra, and compute the spin.
(5 points) Solution: The energy eigenstates of En has degener-
acy n + 1, which form a space Mn on which there is a su(2) lie
algebra action, with the operators Jz, J±. Consider an energy
eigenstate |n1, n2〉, we have

Jz|n1, n2〉 =
1

2
(a†1a1 − a†2a2)(a†1)n1(a†2)n2 |0, 0〉

=
1

2
(n1 − n2)|n1, n2〉

so |n1, n2〉 is the eigenstate of Jz with eigenvalue 1
2 (n1−n2). The

maximal eigenvalue is n
2 , and the minimal eigenvalue is − 1

2 (n).
So it forms a spin n

2 representation.

(c) Consider following perturbed Hamiltonian (λ is small)

H = H0 + λx2
1p

2
2

Compute the first order correction to the energy for the energy level
n1 + n2 = 2.

(10 points) Solution: There are a total of three states α1 = |0, 2〉, α2 =
|1, 1〉, α3 = |2, 0〉 for n = 2. We need to compute the three by three
matrix

〈n1, n2|x2
1p

2
2|n

′

1, n
′

2〉
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and then compute the eigenvalues of this matrix. Since x1 and p2

commute, and so

〈n1, n2|x2
1p

2
2|n

′

1, n
′

2〉 = 〈n1|x2
1|n

′

1〉〈n2|p2
2|n

′

2〉

Next, using the expansion in creation of annihilation operators:

x2
1 =

h̄

2mw
(a2

1+(a†1)2+a1a
†
1+a†1a1), p2

2 =
h̄

2mw
(a2

2+(a†2)2−a2a
†
2−a

†
2a2)

The nonzero matrix element for x2
1 is 〈0|x2

1|2〉, 〈0|x2
1|0〉, 〈1|x2

1|1〉, 〈2|x2
1|2〉

(and conjugate), and their values are (we ignore the factor h̄
2mw )

〈0|x2
1|2〉 =

√
2, 〈0|x2

1|0〉 = 1, 〈1|x2
1|1〉 = 3, 〈2|x2

1|2〉 = 5

similarly the nonzero matrix element for p2
2 is 〈0|p2

2|2〉, 〈0|p2
2|0〉, 〈1|p2

2|1〉, 〈2|p2
2|2〉

(and conjugate), and their values are

〈0|p2
2|2〉 =

√
2, 〈0|p2

2|0〉 = −1, 〈1|p2
2|1〉 = −3, 〈2|p2

2|2〉 = −5

So the non-zero matrix element is

〈0, 2|x2
1p

2
2|2, 0〉, 〈0, 2|x2

1p
2
2|0, 2〉, 〈1, 1|x2

1p
2
2|1, 1〉, 〈2, 0|x2

1p
2
2|2, 0〉,

and the matrix is given as −5 0 2
0 −9 0
2 0 −5


The eigenvalue of above matrix is given as λ1 = −9, λ2 = −7, λ3 =
−3.

3. A Killing vector field kµ ∂
∂xµ satisfies the equation kλ∂λgµν + ∂µk

λgλν +
∂νk

λgλµ = 0.

(a) Prove: Dµkν +Dνkµ = 0, here Dµ is the covariant derivative.

(5 points) Solution: By definition

Dµkν +Dνkµ = ∂µkν − Γρµνkρ + ∂νkµ − Γρµνkρ

Since the connection is given as

Γρµν =
1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν)

The above equation simplifies

Dµkν +Dνkµ = ∂µkν + ∂νkµ − kρgρσ(∂µgνσ + ∂νgµσ − ∂σgµν)

= ∂µkν + ∂νkµ − kσ(∂µgνσ + ∂νgµσ − ∂σgµν)

= ∂µ(kσgνσ) + ∂ν(kσgµσ)− kσ(∂µgνσ + ∂νgµσ − ∂σgµν)

= gνσ∂µk
σ + gµσ∂νk

σ + kσ∂σgµν

= 0

In the last line, we use the definition of Killing vector field.
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(b) For a moving particle in gravitational background with a Killing vec-
tor field, Prove: kµPµ is a conserved quantity, Here Pµ = mdxν

dτ gµν
is the momentum for the free falling particle with trajectory xν(τ).

(10 points) Solution: We need to verify

d

dτ
(kµPµ) = 0

Substitute the definition of Pµ, we need to compute

d

dτ
(kµẋνgµν) =

d

dτ
(kµẋ

µ) = ẋρ∂ρ(kµẋ
µ)

= ẋρẋµDρ(kµ) + ẋρkµDρẋ
µ

The first term is vanishing due to the fact Dρkµ = −Dµkρ, which is
valid because kµ is the Killing vector field. The second term vanishes
by using the equation of motion for the free falling particle

d

dτ
ẋµ − Γµρσẋ

ρẋσ = 0→

ẋρDρẋ
µ = 0

4. Consider following metric

ds2 = −(1− 2M

r
)dv2 + drdv + r2dΩ2

Here dΩ2 is the standard metric on two sphere. Consider the hypersurface
defined by S = r− 2M = 0, and a vector field l = f̃(x)(gµν∂νS) ∂

∂xµ , here

f̃(x) is a non-zero function. Prove:

(a) l is normal to the surface S.

(5 points) Solution: In the particular metric, l = f̃(x) ∂∂v The tan-
gent space for S is generated by the vector (∂v, ∂θ, ∂φ). We have the
inner product

g(f̃(x)
∂

∂v
, ∂v) ∝ gvv = (1−2M

r
), g(f̃(x)

∂

∂v
, ∂vθ) = 0, g(f̃(x)

∂

∂v
, ∂φ) = 0

On S, we have r = 2M , so l is normal to the tangent space of S.

(b) l2 = 0 on the surface S.

(5 points) Solution: Direct computation:

l2 = g(f̃(x)
∂

∂v
, f̃(x)

∂

∂v
) = f̃(x)2gvv = f̃(x)2(1− 2M

r
)

on S, we have r = 2M , and so l2 = 0.
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(c) ∂
∂v is a Killing vector field.

(5 points) Solution: Using the definition of Killing vector field
kλ∂λgµν + ∂µk

λgλν + ∂νk
λgλµ = 0. For the vector field ∂

∂v , only
the component kv = 1 which is constant, other components are zero,
so the Killing equation becomes

kλ∂λgµν = kv∂v(gµν)

Since the coefficient of the metric do not depend on v, the above
equation is zero.

5. The energy momentum tensor for a relativistic quantum field theory is
denoted as θµν , which is symmetric and conserved.

(a) Define new current sµ = xνθ
µν and Kλµ = x2θλµ− 2xλxρθ

ρµ. Com-
pute ∂µsµ and ∂µK

λµ, and explain the condition on θµν so that these
new currents are conserved.

(5 points) solution: Direct computation

∂µsµ = θµµ, ∂µK
λµ = −2xλθµµ

These new currents are conserved if θ is traceless θµµ = 0.

(b) Consider a scalar field σ(x) which transforms under a scale transfor-
mation as

δσ = xλ∂λσ + f−1

we have following Lagrangian

L = Ls −
µ2

0

2
φ2e2fσ +

1

2f2
∂µe

fσ∂µefσ

The infinitesimal scale transformation on scalar field φ is δφ = (1 +
xλ∂

λ)φ. Here Ls is scale invariant part of the Lagrangian. Prove
that: the above Lagrangian is scale invariant.

(10 points) solution: We have

δL = δLs − µ2
0δφφe

2fσ − µ2
0

2
φ2e2fσ2fδσ +

1

f2
∂µ[efσfδσ]∂µefσ

substitute
δφ = (1 + xλ∂λ)φ, δσ = xλ∂λσ + f−1

and using δLs = 0, we have

δL = −µ2
0e

2fσφ(1 + xλ∂λ)φ− (µ2
0)φ2e2fσf(xλ∂λσ + f−1)

+
1

f2
∂µ[efσf(xλ∂λσ + f−1)]∂µefσ

= (4 + xλ∂λ)(−1

2
µ2

0φ
2e2fσ +

1

2f2
∂µe

fσ∂µefσ]

Here we assume the theory is a 4d theory, and so by integrating by
parts, the above Lagrangian is scale invariant.
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(c) Explain why a classically scale invariant Lagrangian for a quantum
field theory may fail to be scale invariant quantum mechanically.

(5 points) solution: For the perturbative quantum field theory, to
deal with divergence of loop diagrams, one need to do regularization
and renormalization. In doing regularization, we introduce a scale
which could spoil the classical scale invariance. This happens for
four dimensional λφ4 theory. It might be possible that one can find a
regularization and renormalization scheme such that scale invariance
is preserved quantum mechanically, this happens for four dimensional
N = 4 supersymmetric field theory.

6. Consider following Lagrangian for N scalar fields φa, a = 1, . . . , N :

L =
1

2
∂µφ

a∂µφa − 1

2
µ2

0φ
aφa − 1

8
λ0(φaφa)2

Here the repeated index implies the summation over the index.

(a) Write down the propagator and interaction vertex for this model, and
write down four point Feynman diagrams up to one loop level.

(5 points) solution: See figure.

a a

a

a

b

b

a

a

b

b

a

a

b

b

c

c

a b

a b

ba

(b) Define g0 = λ0N , and compute the order in g0 and N for all the
diagrams listed in last question. If we fix the coupling g0, and let N
go to infinity, list the leading order Feynman diagrams in 1

N .

(5 points) solution:

The first diagram has order λ0 = g0
N , and the second diagram has

order (λ0)2 ×N , notice that there is an extra factor of N due to the

summation of internal scalar of type c, and so the order is
g20
N2 ∗N =

g20
N . The third diagram has order λ2

0 =
g20
N2 , and notice that here the

type of internal scalar is fixed, so there is no summation.
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a

a

b

b

a

a

b

b

c

c

a b

a b

ba

1)
λ0

2)

3)

λ0 λ0

λ0

λ0

By fixing g0, and in the large N limit, the first and second diagram
is of 1

N order.
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