
S.-T. Yau College Student Mathematics Contests 2020

Geometry and Topology
Solve every problem.

Problem 1. Let Sn be the unit sphere in Rn+1.

(a) Find a 6-form α on R7 \ {0} such that

dα = 0, and
∫
S6
α = 1.

(b) For any smooth map f : S11 → S6, show that there exists a 5-form ϕ on S11 such that

f ∗α = dϕ. (1)

(c) Let
H( f ) =

∫
S11

ϕ ∧ dϕ.

Show that H( f ) is independent of the choice of ϕ satisfying (1).

(d) Show that H( f ) is an even integer, for any smooth map f : S11 → S6.

Solution: Problem 1 is essentially taken from [BT82, p. 227ff] (originally due to Hopf and J. H. C.
Whitehead) and [Hat02, §4.B] (originally due to Steenrod). It covers differential forms, exterior product, de
Rham cohomology, behavior under pull-back, integration on manifolds in geometry; one approach to Part (d)
uses singular cohomology and cohomology operations in topology.

For Part (a), the 6-form can be given by

α =

∑7
j=1(−1)j−1x jdx1 ∧ · · · ∧ d̂x j ∧ · · · ∧ dx7

Vol(S6) · [(x1)2 + · · · + (x7)2]7/2
in R7 \ {0},

Part (b) follows from the fact that H6(S11) = 0.

Part (c) follows from Stokes’ theorem. Note that H( f ) is also independent of the choice of generator α of
H6
deR(S

6).

To see Part (d), one way is to consider the CW complex K = B∪ f S6 obtained by attaching a closed 12-cell B
to S6 via f : S11 = ∂B→ S6. Then, the cohomology Hq(K;Z) is equal to Z for q = 0,6,12 and 0 else. Let α
and β be the generators of Hq(K;Z) for q = 6 and 12, respectively. We claim the cup-product α2 = H( f )β in
H12(K;Z). Indeed, in our previous formulation H( f ) =

∫
∂B

ϕ ∧ f ∗(α) =
∫
K
( f ∗α) ∧ ( f ∗α) which is the same

as taking the cap product [K]_ α2 = H( f )[K]_ β. This shows H( f ) ∈ Z. Suppose H( f ) is an odd number
for some f : S11 → S6. Then Sq6(σ) = σ2 = τ in H12(K;Z2), where Sqi : Hq(K;Z2) → Hq+i(K;Z2) is
the Steenrod square and σ and τ are generators of Hq(K;Z2) for q = 6,12. But Sq6 = Sq2Sq4 + Sq5Sq1

by the Adem relation [Hat02, §4.L]. Note that Sqi(σ) = 0 for 1 ≤ i ≤ 5 for dimension reasons. Hence,
τ = Sq6(σ) = 0, a contradiction. An alternate way to see H( f ) ∈ Z is to use the intersection-theoretic linking
number as in [BT82] or [Whi57, §33].

Problem 1 counts 30 points in total. Part (a)–(c) counts 5 points each, and Part (d) counts 15 points, for
instance, H( f ) ∈ Z (7pts), and H( f ) is even (8pts).



Problem 2. For any h ∈ C∞(R2) and h > 0 on R2, define the Ricci curvature Ric(h) associated
with h by

Ric(h) =
1
h

( ∂2

∂x2 +
∂2

∂y2

)
log h,

where (x, y) are the standard Cartesian coordinates inR2. Either construct a positive smooth function
h1 such that Ric(h1) = 1, or show that there is no such function h1 exists.

Solution: Problem 2 covers manifolds of nonpositive curvature, Riemannian metrics, curvatures. It can be
viewed as a Schwarz type lemma, or a baby version of the generalized maximum principle of Yau [Yau75],
and Cheng-Yau [CY75].

The problem counts 20 points. The first part has negative answer (10 points, which rewards those students
with good intuition or right sense). The second part, proof of the assertion, counts 10 points.

One way is to show f has an upper bound and apply the generalized maximum principle. Alternatively one
can also apply integration method. Since we have equality here, there will be more interesting solutions.

Problem 3. Let M be an n-dimensional Riemannian manifold, and p ∈ M . Let {e1, . . . , en} be
an orthonormal basis of the tangent space TpM , and let {x1, . . . , xn} be a coordinate system of M
centered at p such that

exp−1
p (q) =

n∑
j=1

x j(q)ej,

where expp denotes the exponential map. Let γ(t) = expp(te1), 0 ≤ t ≤ δ, where δ is a positive
constant less than 1.

(a) For 2 ≤ α ≤ n, which one of the following,

t
∂

∂xα

����
γ(t)

or
∂

∂xα

����
γ(t)

,

is a Jacobi field along γ(t)? Prove your assertion.

(b) Denote
gi j =

〈 ∂

∂xi
,
∂

∂x j

〉
, 1 ≤ i, j ≤ n.

Compute
∂2g22

∂x1∂x1 at the point p.

(c) Show that

max
0≤t≤δ

����∂g22

∂x1 (γ(t))
���� ≤ CδA,

where C > 0 is a constant depending only on n, and A is the C0-bound of the curvature tensor
of M along γ(t), for 0 ≤ t ≤ δ.

Solution: Problem 3 covers Jacobi fields, Riemannian metrics, curvature, the exponential map, and geodesic.



For Part (a), only t∂/∂xα is a Jacobi field along γ(t). For Part (b), one way is to let

g22 =
1
t2 〈J, J〉, J ≡ t

∂

∂x2 ,

and use the Jacobi equation to obtain |J |2 = 1 + t2R1212/3 +O(t3); hence,

∂2g22

∂x1∂x1 (0) =
2
3

R1212.

For Part (c), one way is to write
∂g22

∂x1 =
1
t3 (t〈J, J〉

′ − 2〈J, J〉)

and apply the calculus identity

th′(t) − 2h(t) = −2h(0) − h′(0)t + t2
∫ 1

0
(2τ − 1)h′′(τt)dτ

to h(t) = |J |2(t). Note that h′′ = 2R(γ′, J, γ′, J) + 2〈J ′, J ′〉. One still needs to express 〈J ′, J ′〉 in terms of
integration of curvature; thus,

∂g22

∂x1 =
2
t

∫ 1

0
(2τ − 1)R(γ′, J, γ′, J)(τt)dτ

+

∫ 1

0
(2τ − 1)τ

∫ 1

0
[R(γ′, J, γ′, J) + R(γ′, J, γ′, J ′)](τtρ)dρdτ.

The estimate follows from the comparison theorem |R(γ′, J, γ′, J)| (τt) ≤ CAt2τ2 and |R(γ′, J, γ′, J ′)| (τρt) ≤
CAτρt.

Part (b) is taken from [LP87, p. 60] and [SY94, p. 210, Lemma 3.4].

The point of Part (c) is that the constant A does not depend on the bounds of derivatives of curvature; a version
of (c) is used in [WY20, (2.24)].

This problem counts 30 points, with Part (a) 5 points, Part (b) 10 points, and Part (c) 15 points.

Problem 4. Let SO(n) be the set of n × n orthogonal real matrices with determinant equal to 1.
Endow SO(n) the relative topology as a subspace of Euclidean space Rn2 .

(a) Show that SO(n) is compact.

(b) Is SO(3) homeomorphic to the real projective space RP3? Prove your assertion.

(c) Compute the fundamental group of SO(2020).

Solution: Problem 4 covers basics of matrix Lie group SO(n) in geometry, and fundamental groups, covering
spaces, fibrations and the long exact sequence of fibration in topology.

Part (a) follows from the closedness and boundedness of SO(n).

For Part (b), note that SO(3) consists of all rotations in R3 about the origin. Each such rotation, except the
identity, is fixed by its axis and an angle −π ≤ θ ≤ π. Defines a map ψ from the closed unit ball B ⊂ R3

to SO(3), by sending x ∈ B \ {0} to the rotation of angle |x |π around axis x/|x |, and sending x = 0 to the
identity. Then, ψ is continuous. Note that a rotation of angle π is the same as a rotation of angle −π. Thus,
ψ(x) = ψ(−x) for x ∈ ∂B = S2. This means ψ induces a map B/∼∂B→ SO(3), where x1 ∼ x2, x1, x2 ∈ ∂B if
and only if x1 = −x2. Observe that B/∼∂B is homeomorphic to the quotient of the upper hemi-sphere S3

+/∼S2

by identifying the antipodal points on its equator S2; the latter is precisely RP3. One can show the induced
maps from RP3 to SO(3) is continuous and bijective, and hence, it is an homeomorphism.



For Part (c), one way is to apply the exact sequence of homotopy groups to fibration

SO(n) SO(n + 1)

Sn

(2)

to obtain π1(SO(n)) = π1(SO(n + 1)) for n ≥ 3. On the other hand, by Part (b) we obtain π1(SO(3)) = Z2,
by the fact that S3 is a double cover of RP3. Combining these yields π1(SO(n)) = Z2 for all n ≥ 3; this in
particular holds for n = 2020. Part (b) is taken from [Hat02, §3D], the fibration 2 or the fact of homogeneous
space SO(n + 1)/SO(n) can be found in [Hat02, 4D.3] and [War83, p. 126], respectively.

This problem counts 30 points, with Part (a) 5 points, Part (b) 10 points, and Part (c) 15 points.

Problem 5. Let X be a topological space and π : R2 → X a covering map. Let K be a compact
subset of X and B the closed unit ball centered at the origin in R2.

(a) Suppose π : R2 \ B → X \ K is a homeomorphism. Show that π : R2 → X is a homeomor-
phism.

(b) Suppose R2 \ B is homeomorphic to X \ K , where the homeomorphism may not be π. Is X
necessarily homeomorphic to R2? Prove your assertion.

Solution: Problem 5 is taken from a problem that I made for the PhD Preliminary Topology Exam at the
University of Connecticut, August 2018. It covers the covering spaces, which was motivated by a conversation
with L. H. Huang on general relativity.

For Part (a), it suffices to show #π−1(y) = 1, y ∈ X . Pick a sequence {xk} in R2 \ B that tends to infinity;
say xk has coordinates (2k,0) for k ≥ 1. Then, π(xk) has no limit in X , in view of the homeomorphism
π : R2 \ B → X \ K . Suppose π−1(π(xk)) contains more than one point; say x ′

k
, xk . Then, x ′

k
has to lie in

B. By compactness of B, a subsequence {x ′
kl
} converges to a point x∗ ∈ B. This implies π(xkl ) converges to

a point p(x∗) in X , a contradiction.

The answer to (b) is “no.” For example, let X be the torus S1 × S1 and K = ({a} × S1) ∪ (S1 × {b}) ∪ D
where D is a small disk away from the two circles. Then, X \ K is homeomorphic to R2 \ B, but R2 is not
homeomorphic to X .

This problem counts 20 points, with 10 points each part.

Problem 6. Let Fn be the free group of rank n,

(a) Give an example of a finite connected graph such that its fundamental group is F2.

(b) Does F2 contain a proper subgroup isomorphic to F2?

(c) Does F2 contain a proper finite index subgroup isomorphic to F2?

Solution: Let π1(X) and χ(X) be the fundamental group and Euler characteristic of a finite connected graph
X respectively. Recall several facts:

(1) π1(X) is a free group of rank 1 − χ(X).

(2) The correspondence between the subgroups of π(X) and the covering spaces of X , and coverings of
graphs are still graphs.

(3) χ(X̃) = dχ(X) for a finite covering X̃ of degree d of X .

Now we have the answer as below:



Part (b), Yes: pick any graph X of χ(X) = −1, say the figure eight, let X̃ be the double covering of X . Then
we have χ(X̃) = −2 by (3), χ(X) = F2, χ(X̃) = F3 by (1), so F2 has a subgroup F3 by (2). Clearly F3 has a
proper subgroup isomorphic to F2. So F2 contains a proper subgroup isomorphic to F2.

Part (c), No: Pick X as in Part (a). If F2 contains a subgroup G of index d isomorphic to F2, d > 1, then there
is a degree d covering X̃ of X with π( X̃) = G by (2), and χ(X̃) = −d, so the rank of π1(X̃) = 1+ d > 2 by (1),
which contradicts that G = F2.
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