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Analysis and Differential Equations
Solve every problem.

Problem 1. For 𝑛 ≥ 1, we consider the integral

𝐼𝑛 = ∫
[0,1]𝑛

𝑛
1
𝑥1
+ 1

𝑥2
+⋯+ 1

𝑥𝑛

𝑑𝑥1⋯𝑑𝑥𝑛.

Prove that lim
𝑛→∞

𝐼𝑛 exists.

Solution: For all positive integers𝑚 and 𝑛, for all 𝑥, 𝑦 > 0, we check that

(𝑚 + 𝑛)2

𝑥 + 𝑦
≤
𝑚2

𝑥
+
𝑛2

𝑦
.

Thus, 𝐽𝑛 = 𝑛𝐼𝑛 satisfies
𝐽𝑚+𝑛 ≤ 𝐽𝑚 + 𝐽𝑛.

It is well-known that lim
𝑛→∞

𝐽𝑛
𝑛
exists.

Problem 2. Let𝑈 ⊂ 𝐂 be a non-empty open set and 𝑓 ∶ 𝑈 → 𝑈 be a non-constant holomorphic function. Prove
that, if 𝑓 ∘ 𝑓 = 𝑓, then 𝑓(𝑧) ≡ 𝑧 for all 𝑧 ∈ 𝑈.

Solution: Since 𝑓 is not a constant map, 𝑉 B 𝑓(𝑈) ⊂ 𝑈 is an nonempty open set (the open mapping property). Thus, for
𝑧 ∈ 𝑉, we have 𝑧 = 𝑓(𝑧). This implies that 𝑓(𝑧) ≡ 𝑧.

Problem 3. Let 𝑋 ⊂ 𝐑 be a set with positive (Lebesgue) measure. Show that we can find an arithmetic pro-
gression of 2022 terms in 𝑋, i.e., there exists 𝑥1,… , 𝑥2022 ∈ 𝑋 so that the 𝑥𝑖+1 − 𝑥𝑖’s are all equal and positive,
𝑖 = 1,… , 2021.

Solution: We use 𝑚 to denote the Lebesgue measure. Let 𝑥 ∈ 𝑋 be a Lebesgue point; therefore, there exists an interval 𝐼
so that 𝑥 ∈ 𝐼 and 𝑚(𝐼∩𝑋)

𝑚(𝐼)
≥ 1 − 𝜖 and 𝜖 will be determined at the end of the proof. By translating and rescaling, we may

assume that 𝐼 = [0, 1]. We divide 𝐼 into 2022 intervals:

𝐼 = 𝐼1 ∪ 𝐼2 ∪⋯ ∪ 𝐼2022, 𝐼𝑘 = [ 𝑘−12022
, 𝑘
2022 ] , 𝑘 = 1, 2,… , 2022.

Let 𝑋𝑘 = (𝐼𝑘 ∩ 𝑋) −
𝑘−1
2022

be the translation of 𝐼𝑘 ∩ 𝑋 and 𝑋𝑘 ⊂ 𝐼1, 𝑘 = 1,… , 2022. We know that

2022

∑
𝑘=1

𝑚(𝑋𝑘) ≥ 1 − 𝜖.

Thus,

𝑚(
⋂

1≤𝑘≤2022

𝑋𝑘) ≥
1

2022
− 2022𝜖.

Wemay take 𝜖 = 2023, thus,⋂
1≤𝑘≤2022

𝑋𝑘 ≠ ∅. Let 𝑥1 ∈ ⋂
1≤𝑘≤2022

𝑋𝑘. Then 𝑥𝑘 = 𝑥1+
𝑘−1
2022

is the arithmetic progression.

Problem 4. Let 𝐶 ([0, 1]) be the space of all continuous 𝐂-valued functions equipped with 𝐿∞-norm. Let 𝐏 ⊂

𝐶 ([0, 1]) be a closed linear subspace. Assume that the elements of 𝐏 are polynomials. Prove that dim𝐏 < ∞.



Solution: Let 𝐼 = {(𝑥, 𝑦) ∈ [0, 1]2 || 𝑥 ≠ 𝑦}. For each (𝑥, 𝑦) ∈ 𝐼, we define a mapping

𝑇(𝑥,𝑦) ∶ 𝐏 → 𝐂, 𝑢 ↦
𝑢(𝑥) − 𝑢(𝑦)

|𝑥 − 𝑦|
.

Therefore, we have
sup

(𝑥,𝑦)∈𝐼

||𝑇(𝑥,𝑦)𝑢|| ≤ ‖𝑢′‖𝐿∞.

Since 𝐏 is closed, we can apply the Banach-Steinhaus Theorem: there exists 𝐶 > 0, so that

sup
(𝑥,𝑦)∈𝐼

‖
‖𝑇(𝑥,𝑦)

‖
‖
𝐏→𝐂

≤ 𝐶.

We consider the unit ball of 𝐏:
𝐵 = {𝑢 ∈ 𝐏 |

| ‖𝑢‖𝐿∞ ≤ 1} .

Hence, for all 𝑢 ∈ 𝐵, we have
|𝑢(𝑥) − 𝑢(𝑦)| ≤ 𝐶|𝑥 − 𝑦|.

Thus, the family 𝐵 is equicontinuous. By the Arzelà-Ascoli Theorem, it is compact. Thus, 𝐏 is finite-dimensional.

Problem 5. Let Ω ⊂ 𝐑3 be a bounded domain with smooth boundary. Assume that 𝑢 ∈ 𝐶 (𝐑3 − Ω) is a
harmonic function on 𝐑3 − Ω so that 𝑢||

Ω
= 1 and lim

|𝑥|→∞
|𝑢(𝑥)| = 0.

Prove that for such 𝑢, lim
|𝑥|→∞

|𝑥|𝑢(𝑥) exists.

Solution: Let 𝜑(𝑥) ∈ 𝐶∞(𝐑3) so that 𝜑 ≡ 0 on an open neighborhood of Ω and 𝜑 ≡ 1 for |𝑥| ≥ 𝑅 where 𝑅 > 0 is a
sufficiently large number. Therefore, we can regard 𝜑 ⋅ 𝑢 as a smooth function defined on 𝐑3. Hence,

Δ(𝜑𝑢) = 𝜌,

where 𝜌 ≡ 0 for |𝑥| ≥ 𝑅. Therefore, for sufficiently large |𝑥|, we have

𝑢(𝑥) = 𝜑(𝑥)𝑢(𝑥)

= −
1

4𝜋
∫
𝐑3

𝜌(𝑦)

|𝑦 − 𝑥|
𝑑𝑦

= −
1

4𝜋
∫
|𝑦|≤𝑅

𝜌(𝑦)

|𝑦 − 𝑥|
𝑑𝑦

Therefore,

|𝑥|𝑢(𝑥) = −
1

4𝜋
∫
|𝑦|≤𝑅

|𝑥|

|𝑦 − 𝑥|
𝜌(𝑦) 𝑑𝑦.

Since |𝑦| ≤ 𝑅, |𝑥|

|𝑦−𝑥|
converges uniformly to 1 as |𝑥| → ∞, the conclusion follows.

Problem 6. Let 𝑓(𝑥, 𝑦) ∈ 𝐶1(𝐑2). We assume that there exists 𝐶 > 0 so that for all (𝑥, 𝑦) ∈ 𝐑2, ||
𝜕𝑓

𝜕𝑦
(𝑥, 𝑦)|| ≤ 𝐶.

Prove that the following ODE has a globally defined solution for all 𝑦(0) = 𝑦0 ∈ 𝐑:

{
𝑑
𝑑𝑥
𝑦(𝑥) = 𝑓(𝑥, 𝑦(𝑥)),

𝑦(0) = 𝑦0.
(1)

In addition, we assume that 𝑓 is 1-periodic in 𝑥, i.e., for all (𝑥, 𝑦) ∈ 𝐑2, we have 𝑓(𝑥 + 1, 𝑦) = 𝑓(𝑥, 𝑦). Prove that
if (1) admits a globally defined bounded solution, then (1) admits a periodic solution.



Solution: The global existence is easy: fix an interval [0, 𝑎), we have

|𝑦′| ≤ |𝑓(𝑥, 𝑦(𝑥)) − 𝑓(𝑥, 𝑦(0))| + |𝑓(𝑥, 𝑦(0))| ≤ 𝐶|𝑦(𝑥) − 𝑦(0)| + 𝑀 ≤ 𝐶|𝑦| + 𝑀.

where 𝑀 = sup𝑥∈[0,𝑎] |𝑓(𝑥, 𝑦(0))|. By Gronwall’s inequality, 𝑦 is bounded all the way up to [0, 𝑎]. We can then extend 𝑓
across 𝑎. This shows the solution can be defined globally.

Assume that 𝜑 is a bounded solution. We may assume that 𝜑(1) ≠ 𝜑(0). Otherwise, 𝜑 is a periodic solution. Without
loss of generality, we may assume that 𝜑(1) > 𝜑(0). By comparing two solutions 𝜑(𝑥) and 𝜑(𝑥 + 1) of (1), we see that
𝜑(0) < 𝜑(1) < ⋯ < 𝜑(𝑛) < ⋯. Thus, by the boundedness of 𝜑, we may assume that

𝜑(𝑛) → 𝑦∗ ∈ 𝐑, 𝑛 → ∞.

Therefore, the solution to (1) with 𝑦∗ as the initial data is a 1-periodic solution.


