S.-T. Yau College Student Mathematics Contests 2022

Algebra and Number Theory

Solve every problem.

Problem 1.

(a) Let p(x) = a,x" + -+ + a;x + a; € R[x] be a polynomial over an integral domain R. Let K denote the
fraction field of R. Suppose a/b € K is a root of p(x), where a,b € R and are relatively prime. Then, show
that ala, and b|a,,.

(b) Prove that Q(v/2,v/3) = Q(V2 +/3).

Solution:

(a) Easy.

(b) It suffices to show Q(v/2,1/3) € Q(W2 +/3).
Leta = \/5+\/§ It is a root of
p(x) = x* —10x2 + 1.

By (a), p(x) has no rational roots. We claim that p(x) is irreducible over Z. Otherwise, p(x) = (a + bx + cx?)(d +
ex+ fx?). A direct computation will yield such a decomposition is impossible. Hence, p(x) is a minimal polynomial

a over Q. As Q(«) is a vector subspace of Q(\/E, \/3), we obtain

4 = dim Q(a) < dim Q(V2,V/3) < 4.
This implies the statement.
Problem 2. Let R be an integral domain with the fraction field K. An R-module P is projective if there is an
R-module Q such that P Q = F for some free R-module F. A fractional ideal A is an R-submodule of K such that

A = d~ for some ideal I of R and a nonzero element d € R. A fractional ideal A is called invertible if AB = R
for some fractional ideal B.

Show that an invertible fractional ideal A is a projective R-module.

Solution: Assume that A is an invertible fractional ideal. Let A~ its inverse. Then
aay+ - +ayay=1

for some ay, ...,a, € Aand d}, ..., a), € A’ since AA~! = R. Let S be a free R-module of rank n, say, generated by yy, ... , ¥,
Definep : S > Aby p(y;) = a;and P : A - Sby ¢(c) = c(a}y; + -~ a,yy,). This makes sense because caj € R. Obviously,
¢y = id4, hence A is a direct summand of S. In other words, A is a projective module.

Problem 3. Give a direct proof that the Lie algebra 3[(4, C) is isomorphic to the Lie algebra 30(6, C). (You should
construct a Lie algebra homomorphism and prove that it is an ismorphism; you should not use Dynkin diagrams
or the classification theory of simple Lie algebras.)

Solution: We have the representation 81(4,C) — gl(W) where W = A2C*. Let e;, e,, €5, e, be the standard basis of C*.
Then e; A e, A e5 A ey gives an identification A*C* 2 C. We define a complex symmetric bilinear form S : W x W — C by

S, ) =06ATEANC=C

for 6, 7 € W. By writing out an explicit orthogonal basis, you can show that S is non-degenerate. Then, one checks that for
any A € 8[(4,C), we have
S(A8,7)+ S(6,AT) =ABAT+OANAT=AOAT)=0.



Note here that 8[(4, C) acts trivially on A*C*.

Hence, we obtain a Lie algebra homomorphism 31(4,C) — 80(6, C).This must be an isomorphism since both Lie algebras
have the same dimension and 81(4, C) is simple.

Problem 4. Let A = Og be the ring of integers of a number field K. Given a nonzero ideal a C A and an arbitrary
nonzero element a € a, show that there exists b € a such that a and b generate a (in particular, every ideal is
2-generated).

Solution: Since O is a Dedekind domain, every nonzero ideal of it has a unique factorization as a product of nonzero

prime ideals. Write a4 = p'* --- p;'" (p;’s are distinct nonzero prime ideals of A, n; € N). Since a € a, we have a divides aA,
sothata = pj™ - py™ with 0 < m; < n;. For each i, pick x; € p™ \ p/*. Since p"**

L
;"i“), 1 <i < rhasasolution b € A.

and p'jnjﬂ are coprime when i # j,
by the Chinese Remainder Theorem, the system of congruences b = x;(mod p

By the congruence relation above, we see that b € p™ \ p/™*

; as well. So for each 1 < i < r, the order of p; in the prime
ideal factorization of bA is exactly m;. In other words
bA = p'lnl ;n”q;cl q;q, ml.’ kj > 0,

where q;’s are nonzero prime ideals different from those p;’s (if they exist). Therefore

aA + bA = prlnin{ml,nl} pr;lin{mr,n,}q;nin{o,kl} q;nin{o,kl} — Pinl ;nr =a,
as desired.
Problem 5. Let p be a prime number and ¢, be a primitive p-th root of unity. Let K = Q(¢,).

(a) Show that ®, = Zf:ol X' is the minimal polynomial of ¢ p OVer Q.

(b) Compute the trace Trg (1 — ¢,) and the norm Ngq(1 = ¢p).

(c) Show that (1 —¢,)Ox N Z = pZ and deduce that for all y € Ok, we have

Trg,o(v(1 = ¢},)) € PZ.

(d) Determine explicitly the ring of integers of K.

Solution:

(a) Consider g(X) = @,(X +1) = X+ 1)P™' + - + X + 1. Then g(X) = x[(X + )P —1] = Zf:ol (;2))x*. Notice that
forall0 <i < p—2,wehave p | (;¥}),but p? } () = p. By the Eisenstein’s criterion, g(X) is irreducible over Q, so
is @,(X) = g(X —1). Since ¢ isaroot of XP — 1 = (X — 1)®@,(X) but not of (X — 1), we have ®,({},) = 0. Therefore,
@,(X), being monic, is the minimal polynomial of {,, over Q.

(b) Foreachl <i< p—1,wehave ¢}, € Kisalsoarootof XP —1 = (X —1)®,(X) but not of (X — 1), we have ®,(¢}) = 0.
Thus K/Q is a Galois extension whose Galois group is Gal(K/Q) = {o;; cri(g”p) = §’i,, 1<i<p-1}LSo

p_l p—l
Trgq=),A-¢)=(p-1D= 2 ¢ =p-1D— (@) - =(p-1)—(-1) = p,
i=1 i=1
and
= . p-1
Neg = [0 -¢p =)= F 11=p.
i=1 i=0
-1

(c) Notice that ¢}, isarootofa monichtbp € Z[X],s0 ¢, isintegral over Z. Foreachm € Z,letz = m H?:z a- §§)) € Og.
Thenz(1—-¢,)=m ]:[fz_ll(l —¢p) = mp. Thus pZ C (1 - {;,)Og N Z. On the other hand, suppose z € O satisfies



m=z(1-¢ p) € Z. Taking norms on both sides, we get mP = Ng,q(2)p. Since z is integral, Ny/q(z) € Z, we have
p|mP,sop|m. Thus (1 -¢,)Ox NZ C pZ. As a consequence, (1 — {,)0x NZ = pZ.

Now take any y € Og. Observe that foreach 1 <i < p — 1, we have
a1 =) = (A= ¢ = A = &)A +$p + - + ¢ Doy(y) € 1 - ¢,)0k,

$0 Trg/(y(1 = ¢p)) = Zfz_ll oi(y(1 = ¢p)) € (1 = {)Ok as well. On the other hand, y(1 — ¢,) € Ok, so its trace is
in Z. Therefore Trg;q(y(1 — fp)) e(1- §'p)OK NZ = pZ.

(d) Lety = by +bi$p+ -+ bp_lg”g-l € Ok where b; € Q. Notice that forany1 <i < p—1, §1i7 is a conjugate of ¢,
over Q, so
TrgQ(¢h) = Trg/(p) = {p + 3+ + 57 = -1

Set by, = by, then forany 1 <1 < p — 1, we have

p-1
pz E] TTK/Q(@IY)(I - gp)) = Z bi TrK/Q(Q’;)"’l — é‘li)+l+l)
i=0

= by Tri/q(1 = {p) + bp_i_1 Trg (5™ = 1)
= p(bp—l - bp—l—l),

which implies that b, _; — b,_;_; € Z. Thus b; — by € Zforall1 <i < p — 1. Notice that
p-1 )
y= 23 (by = bo)Sh = bo(1+¢p + - + B hH=o,
i=1
soy = Zipz_ll(bi - bo)é’;', € Z[{p]. Therefore Og = Z[{,].
Problem 6. Let 6 € Q be a root of the polynomial f(X) = X3 + 12X? + 8X + 1. Let K = Q(9).
(a) Letg(X) = X3 + pX + q € Z[X]. Compute the discriminant disc(g) of g(X) in terms of p, q.
(b) Show that f(X) is irreducible over Q.

(c¢) Compute the discriminant dg(1, 6, 62). Please provide necessary details.

(d) For any arbitrary number field F of degree n, let a;, a,, ..., a,, € Of. Find and verify a sufficient condition
in terms of the discriminant dp(ay, ..., a,) that the a,, ..., a,, form an integral basis of F.

(e) Write down an explicit integral basis of K in terms of 6 by using the above sufficient condition you have

found. Please justify your arguments.

Solution:

(a) Letay,a,,a; € Q be three roots of g, then by Viéte’s theorem
OCIOCZ + 0(2063 + 063061 = p, 0(10(20(3 = —q.

According to the theory of symmetric polynomials, disc(g) = [(a; — a;)(at, — a3)(az — «;)]? can be expressed as a
polynomial H of p, q. For any A € Q, consider

g1(X) = (X — Aa;))(X — day)(X — daz) = X3 + A2pX + 13¢X,

we obtain that H(12p, 13q) = A°H(p, q). Thus H(p, q) has an expression such that each of its monomials has shape
ri’jpiqj withr ; € Qand 2i + 3j = 6. Thus (i, j) = (3,0) or (0, 2), which means disc(g) = ap>® + bg? for some fixed
a,beqQ.

Let g(X) = X3 — X = X(X — 1)(X + 1), we have

a- (-1 +b-02=[(0-1)O0—-(-1)A-(-1)P=4=>a=—4.



Let g(X) = X3 — 1 = X(X — w)(X — w™ 1), where w = ¢271/3, then we have
L \6
a0 +b- (-1 =[1 - )1 —w)(@-w)]" = (1 - ) = (V=3627/6) = -27= b = —27.

Therefore disc(g) = —(4p> + 27¢).

(b) Suppose f is reducible over Q, then it has a factor X — 7 where 7 € Q. Since 7 is a root of f(X), a monic integer
polynomial, we have T € Og. Thus T € Q N O = Z. Notice that 7(r? + 127 + 8) = —1, we obtain that 7 | 1. Thus
7 = +1. But a direct computation shows that neither of +1 is a root of f(X), a contradiction.

(c) By (b) we see that f(X) is the minimal polynomial of 6 over Q. Let 6; = 6, 6,, 65 be the three roots of f(X). Then

16, 63\’
dg(1,6,6%) =det[1 6, 2
1 6; 63

= [(91 - 92)(92 - 93)(63 - 91)]2

=[((6; +4) — (6, + D)(6; +4) — (85 + D)((65 + 4) — (65 + )
= disc(f(X — 4))

= disc(X3 — 40X + 97)

=—[4-(-40)* +3-972]

=1957.

(d) We claim that if dp(a,, ..., a,) is a square free integer, then a,, ..., a, is an integral basis of F. To see this, fix an
integral basis w,,...,w, of F. Then for any 1 < i < n, there exist t;; € Z such that q; = Z?:l tijjwj. Let T =
(ti)1<i,j<n € Mp(Z). Then linear algebra gives the following relation of integers

dp(ay, ... ,a,) = (det T)?dp(wy, ... ,@,).

Since the left hand side is square free, we have det T = +1. This implies that T~ has integer entries as well, thus
wy, ... , W, can be written as Z-linear combinations of a,, ..., a,. Therefore, ay, ..., a, is an integral basis of F.

(e) Since dg(1,6,6%) = 1957 = 19 - 103 is square free, 1, 6, 6 is an integral basis of K by (d).



