
S.-T. Yau College Student Mathematics Contests 2020

Algebra and Number Theory
Solve every problem.

Problem 1. Let F be a field of characteristic zero. Consider the polynomial ring F[x1, . . . , xn].

(a) Prove Newton’s identity over the field F

pk − pk−1e1 + · · · + (−1)k−1p1ek−1 + (−1)k kek = 0,

where
ek(x1, . . . , xn) =

∑
1≤i1< · · ·<ßk ≤n

xi1 · · · xik

for 1 ≤ k ≤ n, e0 = 1, ek = 0 when k > n, and

pk(x1, . . . , xn) = xk1 + · · · + xkn .

(b) Prove that over the field of F of characteristic zero, an n × n matrix A is nilpotent if and only
if the trace of Ak is equal to zero for all k = 1,2 . . .

Hint: use Part (a).

(c) Prove that over the field of F of characteristic zero, two n × n matrix A and B have the
same characteristic polynomial if and only if the trace of Ak and trace of Bk are equal for all
k = 1,2 . . .

Hint: use Part (a).

Solution: Part (a): Consider

E(y) =
n∏
i=1
(1 − xiy) = 1 − e1y + e2y

2 + · · · (−1)nenyn.

Using −ln(1 − t) =
∑∞

j=1 t j/ j, we obtain

ln(E(y)) =
n∑
i=1

ln(1 − xiy) = −
n∑
i=1

∞∑
j=1
(xiy)j/ j = −

∞∑
j=1

pj y
j/ j .

Apply d/dy to the above, we have

E ′(y)/E(y) = −
∞∑
j=1

pj y
j−1, or − E ′(y) = E(y)

∞∑
j=1

pj y
j−1.

By comparing the coefficients of yk−1 of both sides, we obtain

−(−1)k kek =
k−1∑
j=0
(−1)jejpk−j .

Part (b): Suppose A is nilpotent. Then, the minimal polynomial of A is xr for some integer r . It follows that
the characteristic of A is f (x) = xn. The trace of A is equal to an−1 where −an−1 is the coefficient of xn−1 of
f (x), hence is equal to 0. Similarly, Ak is nilpotent, hence its trace is zero.



Conversely, assume trace of Ak equals 0 for all k ≥ 1. If λ is an eigenvalue of A, then λk is an eigenvalue of
Ak . Since the trace is the sum of eigenvalues, we see that (the sums of powers) pk(. . . , λ, . . .) = 0. By Part (a),
we see that ek(. . . , λ, . . .) = 0. Since the coefficients of the characteristic polynomial f (t) of A are precisely
ek(. . . , λ, · · · ) for 0 ≤ k ≤ n (possibly up to ± signs), we obtain f (t) = tn, hence An = 0.

Part (c): Suppose that A and B have the same characteristic polynomials. Let λA (resp. λB) be an eigenvalue of
A (resp. B). Then, ek(. . . , λA, . . .) = ek(. . . , λB, . . .) for all k ≥ 0. By (a), pk(. . . , λA, . . .) = pk(. . . , λB, . . .).
Since the trace is the sum of eigenvalues, we obtain the trace of Ak and trace of Bk are equal. Conversely,
if the trace of Ak and trace of Bk are equal for all k, then pk(. . . , λA, . . .) = pk(. . . , λB, . . .). Hence,
ek(. . . , λA, . . .) = ek(. . . , λB, . . .) for all k ≥ 0. Thus, A and B have the same characteristic polynomials.

Problem 2.

(a) Let M be a finitely generated R-module and a ⊂ R an ideal. Suppose φ : M → M is an
R-module map such that φ(M) ⊆ aM . Prove that there is a monic polynomial p(t) ⊂ R[t]
with coefficients from a such that p(φ) = 0.

Hint: p(t) is basically just the characteristic polynomial.

(b) If M is a finitely generated R-module such that aM = M for some ideal a ⊂ R, then there exits
x ∈ R such that 1 − x ∈ a and xM = 0.

Solution: Part (a): Let x1, . . . , xm be a generating set for M as an R-module. We have

φ(xi) =
∑

ai j xj

for some ai j ∈ a. Let Ai j be the operator δi jφ − ai jIdM where IdM : M → M is the identity hom and δi j is
the Kronecker’s symbol. Then we have

∑
j Ai j xj = 0 for all j. The matrix A = (Ai j) annihilates the column

vector v = (xj)mj=1, Consider M as an R[φ]-module, then Ai j ∈ R[φ]. Thus, A is a matrix with entries in R[φ].
Its adjugate is well-defined. Multiplying Av = 0 on the left by the adjugate gives rise to detA xj = 0 for all j.
Let p(φ) = detA(φ) (recall A = (δi jφ − ai jIdM)). Then, p(t) is a monic polynomial and p(φ) = 0 on M .

Part (b): By Part (a), IdM : M → M satisfies

IdM
r + a1IdM

r−1 + · · · + ar IdM = 0

for some aj ∈ a. Let x = 1 + a1 + · · · + ar , then x − 1 ∈ a and xM = 0.

Problem 3. Let R = F[x, y]/(y2 − x2 − x3) for some field F.

(a) Prove that R is an integral domain.

(b) Compute the normalization of R (i.e., the integral closure of R in its field of fraction).

Solution: Part (a): It suffices to prove that y2 − x2 − x3 is irreducible in F(x)[y]. It is reducible if it
has a root f (x)/g(x) ∈ F(x), where f (x) and g(x) are co-prime. But ( f (x)/g(x))2 − x2 − x3 = 0 implies
f (x)2 = g(x)2(x2 + x3) = (g(x)x)2(x + 1). Thus, (x + 1) divides f (x). Hence, (x + 1)2 divides f (x)2. It
follows that (x + 1) divides g(x), a contradiction. This implies that R is an integral domain.

Part (b): We have 0 = y2 − x3 − x2 = x2(y2/x2 − x − 1) = x2(t2 − x − 1). As K is an integral domain,
t2 − x − 1 = 0, that is, x = t2 − 1. Then y = xy/x = (t2 − 1)t. It follows that any element of R is a polynomial
in t, hence R ⊂ F[t]. Therefore K ⊂ F(t). Thus, K = F(t).

Now let S be the integral closure of R in K . We claim S = F[t]. Let f (t) ∈ F[t]. Let s = 2k be an even
integer. Then

ts = (t2)k = ((t2 − 1) + 1)k =
k∑
i=0

(
k
i

)
(t2 − 1)i =

k∑
i=0

(
k
i

)
xi .



Let s = 2k + 1 be an odd integer with s > 3, using the above, we obtain

ts = ts − ts−2 + ts−2 = ts−3(t2 − 1)t + ts−2 =

(
k−1∑
i=0

(
k − 1

i

)
xi

)
y + ts−2.

Repeat the above for the odd integer s− 2, by induction, we see that ts is of the form g(x, y)+ at. Combing all
the above, we see that f (t) is of the form h(x, y) + bt for some b ∈ Z and h(x, y) ∈ R. Then, f (t) is a root of

(X − h(x, y))2 − b2 − b2x ∈ R[X].

it follows that f (t) ∈ S. Hence, F[t] ⊂ S. But, R ⊂ F[t] and F[t] is integrally closed in F(t), hence S ⊂ F[t].
Therefore S = F[t].

Problem 4. Let p and ` be two prime numbers and [`x] denote the `-th cyclotomic polynomial
1 + x + · · · + x`−1.

(a) Prove that [`x] is an irreducible element of Q[x].

(b) Show that [`x] is divisible by x − 1 in Fp[x] if p = `. Here Fp is the finite field Z/pZ.

(c) Suppose p , `. let a be the order of p in F` . Show that a is the first value of m for which
the group GLm(Fp) of invertible m × m matrices with entries from Fp contains an element of
order `.

Hint: Derive and use the formula for the number of elements in GLm(Fp).

Solution: Part (a): [`x] is irreducible over Q if and only if [`x+1] is irreducibleQ.

[`x+1] = ((x + 1)` − 1)/((x + 1) − 1) = x`−1 + `x`−2 + · · · + `(` − 1)/2x + `.

This is irreducible by Eisenstein’s criterion.

Part (b): p = `. If p = 2, then [2]x = 1 + x = x − 1 If p > 2, then

[p]x = (xp − 1)/(x − 1) = (x − 1)p−1.

Part (c): Let e1, . . . , em be the standard basis of Fnq , where q is a prime power. If A ∈ GLm(Fq), then
the columns of A, {Ae1, . . . , Aen}, form a basis for Fnq . Conversely, any basis form columns of an element
A ∈ GLm(Fq). Thus, it is equivalent to count the number of bases B = ( f1, . . . , fn) for Fnq . The first
vector has qm − 1 choices. The second, not a multiple of the first, has qm − q choices. The third vector
f3 ∈ Fnq \ {a f1 + b f2 | a, b ∈ Fq} has qm − q2 choices. Inductively, fi has qm − qi choices. Therefore��GLm(Fq)

�� = (qm − 1)(qm − q) · · · (qm − qm−1).

If GLm(Fp) contains an element of order `, then ` divides

|GLm(Fp)| = p(
m
2 )

m∏
i=1
(pi − 1).

Sicne ` , p, the first value of m such that ` divides the above is when ` divides the highest term pm − 1 for
the first time. This happens when pa − 1 = 0 mod `.

Problem 5. Let p ≥ 3 be a prime number and let Zp be the ring of p-adic integers.

(a) Show that an element in 1 + pZp is a p-th power in Zp if and only if it lives in 1 + p2Zp.

(b) LetZ×p denote the group of units inZp. Show that there exist a, b, c ∈ Z×p such that ap+bp = cp

if and only if
p−1∑
i=1

ip−2ti ≡ 0 (mod p)



for some integer t ∈ {2,3, . . . , p − 1}. (In particular, this condition holds for p = 7 by taking
t = 3. Therefore, Fermat’s Last Theorem does not hold for Z7.)

Solution: Part (a): If an element in 1 + pZp is a p-th power, it must have form (1 + pα)p for some α ∈ Zp .
A simple calculation yields

(1 + pα)p = 1 +
(
p
1

)
pα +

(
p
2

)
(pα)2 + · · · ∈ 1 + p2Zp .

To prove sufficiency, recall the two functions

exp : pZp → 1 + pZp, log : 1 + pZp → pZp

which are inverses to each other. For any a = 1 + p2x ∈ 1 + p2Zp , consider

a
1
p := exp

(
1
p

log(a)
)
.

Notice that
1
p

log(a) =
1
p

log
(
1 + p2x

)
=

1
p

∞∑
i=1

(−1)i−1

i

(
p2x

) i
∈ pZp

and hence a
1
p is well-defined. It is clear that

(
a

1
p

)p
= a.

Part (b): As an immediate corollary from Part (a), if we write an element a ∈ Z×p in terms of Witt coordinates
a = (a0,a1, . . .), then a is a p-th power in Zp if and only if a1 = 0. In particular, whether an element in Z×p is
a p-th power can be detected by its image under the projection Zp = W(Fp) → W2(Fp).

Hence, there exist a, b, c ∈ Z×p such that ap + bp = cp if and only if there exist a0, b0, c0 ∈ F
×
p such that

(a0,0) + (b0,0) = (c0,0) in W2(Fp). Using the addition formula of Witt coordinates, the later equation
translates to a0 + b0 = c0 and

1
p

(
ap

0 + bp
0 − (a0 + b0)

p
)
= 0.

Direct calculation gives

1
p
(ap

0 + bp
0 − (a0 + b0)

p) = −

p−1∑
i=1

1
p

(
p
i

)
ai0bp−i

0

= −

p−1∑
i=1

1
i
(p − 1)(p − 2) · · · (p − i + 1)

(i − 1) · · · 1
ai0bp−i

0

≡

p−1∑
i=1

1
i
(−1)iai0bp−i

0 ≡

p−1∑
i=1

ip−2
(
−

a0
b0

) i
(mod p)

Since a0 + b0 = c0 , 0, we have − a0
b0
, 1. Namely, there exists t ∈ {2,3, . . . , p − 1} such that

p−1∑
i=1

ip−2ti ≡ 0 (mod p).

All steps above are clearly reversible and hence cover both the “if” and “only if” parts. This completes the
proof.

Problem 6. Recall that a metric space is called spherically complete if any decreasing sequence of
closed balls has nonempty intersection.

Let p be a prime number and let Qp be the field of p-adic numbers. For every integer n ≥ 1,
consider the finite extension Qp(µpn ) of Qp generated by all pn-th roots of unity. Let Qp(µp∞) =



∪n≥1Qp(µpn ). All of these algebraic extensions of Qp are equipped with the unique norm | · |
extending the usual p-adic norm on Qp.

Question: Which of the following are spherically complete? Explain why.

(a) Qp;

(b) Qp(µpn );

(c) Qp(µp∞);

(d) �Qp(µp∞), the completion of Qp(µp∞).

Hint: Show that there exists a sequence a1,a2, . . . ∈ �Qp(µp∞) such that |a1 | > |a2 | > · · · and
lim |ai | > 0, and such that the closed balls

Bi :=
{
x ∈ �Qp(µp∞) : |x − a1 − a2 − · · · − ai | ≤ |ai |

}
have empty intersection.

Solution: (a) and (b) are spherically complete. In fact, every finite extension of Qp is spherically complete.
Such a field is discretely valued and complete. In this case, a decreasing sequence of closed balls either
eventually stabilizes, or has radius converging to 0. In both cases, the intersection is nonempty.

(c) is not spherically complete. Notice that spherical completeness implies completeness. (Why? From any
Cauchy sequence, one can construct a decreasing sequence of closed balls whose intersection gives the limit
of the Cauchy sequence.) However, it is well-known that Qp(µp∞ ) is not complete, hence not spherically
complete.

(d) is not spherically complete. Assume that �Qp(µp∞ ) is spherically complete. Notice that��� �Qp(µp∞ )
��� = 0 ∪

{
p

m
pn (p−1) : m ∈ Z, n ≥ 0

}
.

In particular, �Qp(µp∞ ) is not discretely valued. Choose and fix a sequence of negative rational numbers
r1 > r2 > · · · such that

ri ∈
{
−

m
pn(p − 1)

: m ∈ Z>0, n ≥ 0
}

and r := limi ri exists. We can find a sequence of elements a1,a2, . . . ∈ �Qp(µp∞ ) such that |ai | = pri for all i.
In particular, we have |a1 | > |a2 | > · · · and lim |ai | = pr > 0. Consider closed balls

Bi :=
{
x ∈ �Qp(µp∞ ) : |x − a1 − a2 − · · · − ai | ≤ |ai |

}
.

If |x − a1 − a2 − · · · − ai+1 | ≤ |ai+1 |, then

|x − a1 − a2 − · · · − ai | ≤ |ai+1 | < |ai |.

This means B1 % B2 % · · · is a strictly decreasing sequence of closed balls. By assumption, B := ∩∞
i=1Bi is

nonempty. It is necessarily an open subset of �Qp(µp∞ ), and hence contains at least an element q ∈ Qp(µp∞ ).

Now, we vary a = (a1,a2, . . .) and write “Ba,” “qa” instead of “B,” “q.” Running through all possible a’s, we
obtain uncountably many disjoint Ba’s. (Why? If two a’s have the same a1, . . . ,ai−1 but |ai − a′i | > |ai+1 |,
then the two Bi+1’s are disjoint.) On the other hand, from each of these Ba, we have an element

qa ∈ Ba ∩ Qp(µp∞ ).

These qa’s map to distinct elements in Qp(µp∞ )/(s) where s ∈ Qp(µp∞ ) has 0 < |s | ≤ pr . However,
Qp(µp∞ )/(s) is a countable set, a contradiction.


