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Algebra and Number Theory
Solve every problem.

Problem 1. For any prime p and a nonzero element a ∈ Fp, prove that the polynomial A(x) = xp − x − a
is irreducible and separable over Fp.

Solution: First of all, A(x) is separable because A′(x) = −1 is non-zero. Second, A(x) has no root in Fp , since
A(b) = bp−b−a = −a for any b ∈ Fp . Notice that A(x+a) = (x+a)p−(x+a)−a = xp+ap−x−a−a = xp−x−a = A(x).
Therefore, by iteration, we see that A(x + ba) = A(x) for all b = 1,2, . . .. As b runs over all positive integers, ba runs
over Fp . This means that in the splitting field K of A(x) over Fp , if a is a root, then, so is a + k, k ∈ Fp . It follows that

A(x) =
p−1∏
k=0
(x − a − k).

If A(x) is not irreducible overFp , then there exist r(x), s(x) ∈ Fp[x] such that A(x) = r(x)s(x) and 0 < d = deg r(x) < p.
Being a divisor of A(x), r(x) has the form

r(x) =
∏
k∈J

(x − a − k),

for some subset J ⊂ Fp . The coefficient of xd−1 of r(x) is the negative of the sum of all roots of r(x), hence it is equal
to ∑

i∈J

(a + i) = da +
∑
i∈J

i ∈ Fp .

Then, a ∈ Fp , a contradiction.

Problem 2. Determine the automorphism group of the splitting field of f (x) = x3 − 3x + 1 over Q.

Solution: f (x) is irreducible over Z (hence over Q as well). To see this we reduce mod 2 and evaluate: f (0) =
1, f (1) = 1.

Next, f ′(x) = 3x2 − 3 is positive outside the interval (−1,1) and negative in the interval (−1,1). Since f (−1) = 3
and f (1) = 1, we see that there are three real roots, denoted a1,a2 and a3. Since f (x) is irreducible of degree 3,
dimQ Q(ai) = 3. Let K denote the splitting field of f (x). Thus, K is either degree 6 over Q, or it is degree 3 over Q.
In the latter case the automorphism group is cyclic group of order 3. Let us prove that the former case is not possible.
In fact, in the former case the automorphism group G = AutQK = S3, the symmetric group on 3 letters. We let σ be
the automorphism that maps a1 to a3, a3 to a1 and a2 to a2. Write f (x) = (x − a1)(x − a2)(x − a3). By taking the
derivative of f (x) and substituting ai into this equation gives

(a1 − a2)(a1 − a3) = 3a2
1 − 3,

(a2 − a1)(a2 − a3) = 3a2
2 − 3,

(a3 − a1)(a3 − a2) = 3a2
3 − 3.

Take the product of the above three equations and then take the square roots, we have∏
1≤i< j≤3

(
ai − aj

)
= 9.

Then apply the permutation σ to the above, the left is sent to its negative, but 9 is obviously fixed by σ. Therefore,
σ cannot be in G. It follows that the automorphism group G must be the cyclic group of order 3. Moreover,
Q(a1) = Q(a1,a2,a3).



Problem 3. Let R = F[x, y]/(x2 − y3) for some field F.

(a) Prove that R is an integral domain.

(b) If t denotes the element x/y in the fraction field K of R, prove that K is equal to F(t).

(c) Prove that F[t] is the integral closure of R in K = F[t].

Solution:

(a) To prove x2 − y3 is irreducible, it suffices to show that it is irreducible in F(y)[x]. Since it is a quadratic
polynomial in x over F(y), it is reducible if and only if it has a root in F(y). Suppose f (y)/g(y) is a root, where
f (y) and g(y) are co-prime. But, ( f (y)/g(y))2 − y3 = 0 implies f (y)2 = y3g(y)2. Thus, an irreducible factor
of g(y) divides f (y)2, hence divides f (y), a contradiction. This implies the ideal generated by x2 − y3 is prime
since F[x, y] is a UFD. Hence, R is an integral domain.

(b) Since x2 = y3 in R, we have y = (x/y)2 = t2 in K . Also, x = yx/y = yt = t3. Thus, any element f (x, y) ∈ R
is a polynomial in t in K . Therefore, any element f (x, y)/g(x, y) ∈ K belongs to F(t). On the other hand,
F(t) ⊂ K , hence K = F(t).

(c) Let h(t) ∈ F[t] ⊂ F(t). Replacing t2 by y and t3 by x (from (b)), we have h(t) = at+g(x, y) for some g(x, y) ∈ R.
Then, we have (h(t) − g(x, y))2 = (at)2 = a2y. Thus, h(t) is a root of X2 − 2g(x, y)X + g(x, y)2 − a2y2 ∈ R[X].
This implies that F[t] is integral over R. Suppose now that h(t) ∈ F(t) is integral over R. Then h(t) is also
integral over F[t]. But, F(t) is the fraction field of F[t] and F[t] is a UFD, hence F[t] is integrally closed.
Therefore, h(t) ∈ F[t].

Problem 4. Let p1, . . . , pn be n distinct prime numbers. Show: √p1 + · · · +
√

pn is not rational.

Solution: It suffices to show [Q(√p1, . . . ,
√

pn) : Q] = 2n (this implies that the 2n numbers 1,√pα1 · · · pαk

(1 ≤ α1 < · · · < αk ≤ n) are linear independent over Q). We show the following stronger result:

Lemma: Suppose K is a field with characteristic 0, and {x1, . . . , xn} ⊂ K is a subset such that the product of elements
of any non-empty subset of {x1, . . . , xn} is not a square in K . Then [K(√x1, . . . ,

√
xn) : K] = 2n.

We prove the lemma by induction on n. The case n = 1 is trivial. Suppose n = 2 and we aim to show [K(√x1,
√

x2) :
K] = 4. Since we have [K(√x1) : K] = 2, it suffices to prove [K(√x1,

√
x2) : K(

√
x1)] = 2. We only need to prove

√
x2 < K(

√
x1). If not, then

√
x2 = a + b

√
x1 with a, b ∈ K . Since √x1 < K , we have b , 0. Then a2 = (

√
x2 − b

√
x1)

2

implies that √x1x2 ∈ K , which is a contradiction. We conclude the lemma for n = 2.

Nowsuppose n ≥ 3 and suppose for smaller n the lemmaholds. By the induction assumption, we have [K(√x3, . . . ,
√

xn) :
K] = 2n−2. Denote L = K(

√
x3, . . . ,

√
xn). Then we only need to show [L(√x1,

√
x2) : L] = 4. It suffices to

prove √x1,
√

x2,
√

x1x2 < L. Suppose one of √x1,
√

x2,
√

x1x2, say y, belong to L. Then L(y) = L, which im-
plies that [K(y,√x3, . . . ,

√
xn) : K] = 2n−2. But on the other hand, by the induction-assumption, we must have

[K(y,
√

x3, . . . ,
√

xn) : K] = 2n−1, a contradiction!

Problem 5. Find all integral solutions (x, y) for the equation x2 + 13 = y3. (Hint: You can use the fact that
Q(
√
−13) has class number 2).

Solution: The only solutions are (x, y) = (±70,17).

Suppose x2 + 13 = y3 has integral solution (x, y). We may first assume x, y are positive. It is easy to see that
gcd(x, y) = 1. If y is even, then x is odd and x2 + 13 ≡ 6 (mod 8). But y3 ≡ 0 (mod 8). This is impossible. Therefore,
x is even and y is odd.

InZ[
√
−13]we have (x+

√
−13)(x−

√
−13) = y3. Consider the principal ideals (x+

√
−13), (x−

√
−13), (y) ⊂ Z[

√
−13].

Suppose (x +
√
−13) and (x −

√
−13) are not coprime to each other, then there exists a prime ideal P ⊂ Z[

√
−13] such

that P
��(x + √−13) and P

��(x − √−13). Then x ±
√
−13 ∈ P, which implies that 2

√
−13 ∈ P and 2x ∈ P. We have also

P
��(y)3 which implies that P

��(y). Thus y ∈ P. But gcd(2x, y) = 1, a contradiction.



We conclude that (x +
√
−13) and (x −

√
−13) are two ideals coprime to each other. Since Z[

√
−13] is a Dedekind ring,

there exists ideals P1,P2 such that (x +
√
−13) = P3

1 , (x −
√
−13) = P3

2 and (y) = P1P2.

Since the class number of Z[
√
−13] is 2, the square of any fractional ideal is principal. Since P3

i is principal, we know
that Pi is principal. Note that the units ofZ[

√
−13] are±1. Thus there exists a, b ∈ Z, such that x+

√
−13 = (a+b

√
−13)3.

Comparing the coefficient of
√
−13, we conclude that 1 = 3a2b − 13b3. This implies b = −1 and a = ±2. Thus

x = ±70, y = 17.

Problem 6. Let p be a prime number and Qp be the field of p-adic numbers. Fix an algebraic closure Qp

of Qp. Let g : Z≥0 → N be a strictly increasing function. For each i ∈ Z≥0, pick a primitive (pg(i) − 1)-th
root of unity ζi in Qp.

(a) Show that for each i ≥ 0, Ki B Qp(ζi) is an unramified Galois extension of Qp of degree g(i).

(b) Give an explicit function g as above such that Ki−1 ⊂ Ki for all i > 0. Let 0 = N0 < N1 < N2 · · ·

be an increasing sequence of nonnegative integers. Let αi B
∑i

j=0 ζjp
N j . Show that for each i ≥ 0,

Ki = Qp(αi) and that (αi) is a Cauchy sequence in Qp.

(c) Let η ∈ Qp be of degree g over Qp, prove that there exists M ∈ N such that ζi does not satisfy any
congruence

sg−1η
g−1 + sg−2η

g−2 + · · · + s1η + s0 ≡ 0 (mod pM )

in which the si’s are p-adic integers not all of which are divisible by p.

(d) Take a suitable sequence (Ni) as above such that (ai) does not converge in Qp. Conclude that Qp is
not complete with respect to the p-adic topology.

Solution:

(a) Let vp be the usual p-adic valuation of Qp , then vp has a unique extension to Ki , which is vKi (x) : =
[Ki : Qp]

−1vp(NKi/Qp
(x)). The relation ζ p

g(i)−1
i = 1 implies that vKi (ζi) = 0, so ζi ∈ OKi . Let P(X) ∈ Zp[X]

be the minimal polynomial of ζi over Qp , then P(X) is a factor of Xpg(i)−1 − 1. Since ζi is primitive, we see that
ζ li ∈ Ki,0 ≤ l ≤ pg(i) − 1 are all roots of Xpg(i)−1 − 1. Thus each root of P(X) has shape ζ li ∈ Ki , which implies
that Ki/Qp is normal. Since char(Qp) = 0, all its extensions are separable. So K/Qp is a Galois extension.
The reduction P(X) ∈ Fp[X] of P(X) is also a factor of Xpg(i)−1 − 1 ∈ Fp[X]. Since p and pg(i) − 1 are
coprime, Xpg(i)−1 − 1 ∈ Fp[X] has no multiple roots. Using Hensel’s lemma and the fact that P(X) ∈ Zp[X] is
irreducible, we see that P(X) is also irreducible.
Let Ki be the residue field of Ki , then ζi ∈ Ki is a root of P(X). We see that [Ki : Fp] ≥ [Fp(ζi) : Fp] = deg(P) =
deg(P) = [Ki : Qp]. It follows that the ramification index e satisfies

1 ≤ e = [Ki : Qp]/[Ki : Fp] ≤ 1.

Thus e = 1, i.e. K/Qp is an unramified extension.
The argument above also implies the equality [Ki : Fp] = [Ki : Qp], the relation Ki = Fp[ζi] and the property
that Ki contains all (pg(i) − 1)-th roots of unity. Thus Ki/Fp is cyclotomic and ζi is primitive. Now, since Ki

×

is a cyclic group of order p[Ki : Qp ] − 1, we get that [Ki : Qp] = g(i). Thus the degree of ζi over Qp is g(i).

(b) Take any sequence g(i) such that g(i)/g(i−1) is an integer at least 2, e.g., g(i) = 2i . Then (pg(i−1)−1) | (pg(i)−1),
so ζi−1 is a power of ζi . Thus Ki−1 ⊂ Ki holds for each i > 0. For any 1 < i < i′, we have

vKi′
(αi′ − αi) = vKi′

(pi+1) + vKi′
(an element in OKi′

) ≥ i + 1,

which means that (αi) is a Cauchy sequence.
Take any σ ∈ Gal(Ki/Qp)\{id}. Notice that σ(αi) =

∑i
j=0 σ(ζi)p

Ni . Since ζi , σ(ζi), we get vKi (α−σ(αi)) =

vKi ((ζi − σ(ζi))p
Ni + · · · ) = Ni < ∞. So σ(αi) , αi , i.e., σ does not fix αi . Thus Qp(αi) = Ki .



(c) Suppose the contrary, then for any M ∈ N, there exist sM
g−1, · · · , s

M
0 ∈ Zp , not all divisible by p, such that

sMg−1η
g−1 + sMg−2η

g−2 + · · · + sM1 η + sM0 ≡ 0 (mod pM ).

By the pigenhole principle, there are an 0 ≤ j ≤ g − 1 and an infinite subset R ⊂ Z≥0 such that p - sMi for
all M ∈ R. Since Zp is sequentially compact, so is Zg

p . Thus the sequence (sM
g−1, · · · , s

M
0 )M ∈R ∈ Zg

p has a
convergent subsequence. Let (sg−1, · · · , s0) ∈ Zg

p be the limit of this subsequence. Then p - sj and

sg−1η
g−1 + sg−2η

g−2 + · · · + sη + s0 ≡ 0 (mod pr ), for any r ∈ N.

In other words, vQp (η)(sg−1η
g−1 + sg−2η

g−2 + · · · + sη + s0) ≥ r for all r ∈ N, thus equals to∞. So sg−1η
g−1 +

sg−2η
g−2 + · · · + sη + s0 = 0, contradicting the assumption that η has degree g over Qp .

(d) Wewill take an increasing sequence (Ni) by induction. We have N0 = 0 already given. Suppose we have defined
Nj for all j ≤ i, so that we have αi =

∑i
j=0 ζjp

N j determined. Since αi has degree g(i) over Qp , by (c), there
exists Ni+1 > Ni such that ζi does not satisfy any congruence

tnαn
i + tn−1α

n−1
i + · · · + t1αi + t0 ≡ 0 (mod pNi+1 ),

for any n < g(i) and tj ∈ Zp not all divisible by p. Then the sequence (Ni) is completely defined.

Suppose Qp is complete, then (αi) converges to certain α ∈ Qp . Then there exist tn, tn−1, . . . , t0 ∈ Zp , not all
divisible by p, such that

tnαn + tn−1α
n−1 + · · · + t1α + t0 = 0.

Choose i with g(i) > n. Since α ≡ αi (mod pNi ), we have

tnαn
i + tn−1α

n−1
i + · · · + t1αi + t0 ≡ 0 (mod pNi+1 ),

a contradiction. This proves the assertion.


