
S.-T. Yau College Student Mathematics Contests 2018

Analysis and Differential Equations
Team

Please solve the following 5 problems.

1. Suppose {fn}∞n=1 ∈ L2(R) is a sequence that converges to 0 in the L2 norm .
Prove that there exists a subsequence {fnk

} such that fnk
→ 0 almost everywhere.

2. Let f̂(ξ) =
∫

e−ixξf(x)dx be the Fourier transform on Schwartz function f ∈ S(R).

Suppose f ∈ S(R) satisfies f(2πn) = 0 and f̂(n) = 0 for all integers n. Prove that
f = 0.

3. If f is integrable on Rd, then

lim
m(B)→0,x∈B

1

m(B)

∫

B

f(y)dy = f(x),

for a.e. x,B is an open ball centered at x.

4. Let C[0, 1] = {f : [0, 1] → R| f is continuous} be the space of continuous function

on [0, 1]. Let ρ(f, g) =
∫ 1

0
|f(x)− g(x)|dx be a metric on [0, 1].

Show that (C[0, 1], ρ) is not a complete metric vector space.
Construct a complete metric vector space (W, ρ̃) such that i : (C[0, 1], ρ) ↪→ (W, ρ̃)

is an isometric embedding such that ρ̃|C[0,1] = ρ, C[0, 1] = W .

5. Let Ω be a simply connected domain in C. Consider a point z0 ∈ Ω and solve the
Dirichlet problem in Ω with the boundary values log |ζ−z0|. The solution is denoted by
G(z, z0) and let g(z, z0) = G(z, z0)− log |z− z0|. Let w = f(z) : Ω → D1 = {z||z| < 1}
be the one to one surjective conformal mapping with f(z0) = 0. Show that

1) g(z, z0) = − log |f(z)|.
2) g(z, z0) = g(z0, z). (Hint: Let g(z, z1) = g1, g(z, z2) = g2, calculate the integral

g1 ∗ dg2 − g2 ∗ dg1 over the cycle ∂Ω − c1 − c2, where c1, c2 are small circles around
z1, z2, du = uxdx + uydy, ∗du = −uydx + uxdy.)
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S.-T. Yau College Student Mathematics Contests 2018

Probability and Statistics

Team (5 problems)

Problem 1. Let Xi, 1 ≤ i ≤ N be i.i.d. random variables. Here X1 is uniformly
distributed on [0, 1]. We reorder them as

X̃1 ≤ X̃2 ≤ · · · X̃N

a) Let N = 2m− 1, and Y = X̃m, please find the A and B such that

Y − A

NB

has nontrivial distribution, and please find this distribution.

b) Let N = 2m, and Y = X̃m − X̃m−1, please find the A and B such that

Y − A

NB

has nontrivial distribution, and please find this distribution.

Problem 2. Let X = (Z2)
N, i.e., X = (X1, X2 · · · , XN · · · ), Xi ∈ (0, 1). It can be

considered as countable lightbulbs. 0 means off, 1 means on. We start with X0 =
0. Keep generating independent geometric random variables, whose distribution are
geom(1/2). Denote them as K1, K2 · · · . Now let Xm (for m ≥ 1) be as follows

(Xm −Xm−1)k = 1(k = Km), Z2

i.e, in the m− th turn, we only change the status of the Km−th light bulb. Then what
is the probability of all lights being off again, i.e.,

P (∃m > 1, Xm = 0)

Problem 3. Let x1, x2, . . . , xn be d-dimensional vectors of real numbers with n suffi-
ciently large but the exact value is not of importance.

A function of µ is defined to be

`(µ) = sup{
n∑

i=1

log pi :
n∑

i=1

pixi = µ;
n∑

i=1

pi = 1, p1 > 0, . . . , pn > 0}

on the space of the interior of the convex hull of x1, . . . , xn.

(a) Show that this is a concave function of µ on the convex hull.

(b) Let x̄ = n−1
∑n

i=1 xi. Let a be a vector of length d. Prove that `(x̄ + ta) is a
decreasing function of t when t > 0.
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Problem 4. Consider the histogram estimator, defined as follows. We observe iid
random variables X1, . . . , Xn, taking values in [0, 1] according to the distribution with
PDF f (assuming it is sufficiently smooth). Define bins

B1 =

[
0,

1

m

)
, B2 =

[
1

m
,

2

m

)
, . . . , Bm =

[
m− 1

m
, 1

]

Let h = 1/m, vj be the number of observations in bin Bj, and define p̂j = vj/n and
pj =

∫
Bj

f(u)du. Then the histogram estimator of the density f is

f̂n(x) =
m∑

j=1

p̂j

h
I{x ∈ Bj}

1. Find the (exact) mean and variance of f̂n(x).

2. Explain why increasing the number of bins decreases the bias of f̂n(x).

3. If our goal is to minimize the mean-squared error

MSE = E

[∫
(f(x)− f̂n(x))2dx

]
,

please give some advice on how to choose m.

Problem 5. Let Xi ∼ N(θi, 1) independently for i = 1, . . . , k. We are interested in
estimating τ = θ2

1 + · · ·+ θ2
k given observations X1, . . . , Xk.

1. A possible estimator of τ is τ̃ =
∑k

i=1 X2
i − k. Show that it is unbiased and

compute its sampling variance.

2. Now assume the proper prior θi ∼ N(0, A), independently for i = 1, . . . , k and
a given A > 0. Since A is unknown, please provide an estimator Â of A and
also derive the empirical Bayes estimator of τ , denoted as τ̂B. (Hint: τ̂B = E(τ |
X1, . . . , Xk, Â)).

3. How do you compare the two estimators, τ̃ and τ̂B?
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S.-T. Yau College Student Mathematics Contests 2018

Geometry and Topology
Team

Please solve 5 out of the following 6 problems.

1. Let X be (S2 × S2) ∪S2 D3, where we attach the 3-disk via the map

S2 → S2 ∨ S2

which crushes a great circle connecting the north and south poles. Compute the ho-
mology groups of X.

2. (a) Let A be a single circle in R3. Compute the fundamental group π1(R3 − A).
(b) Let A and B be disjoint circles in R3, supported in the upper and lower half

space, respectively. Compute π1(R3 − (A ∪B)).

3. Consider the differential 1-form ω = xdy−ydx+dz in R3 with coordinates (x, y, z).
Prove that fω is not closed for any nowhere zero function f : R3 → R.

4. Show that

Qn := {(x1, · · · , xn+1) ∈ Rn+1;
n+1∑
i=1

(xi)4 = 1}

is a differentiable manifold.

5. Let M be a closed surface in R3. Prove that∫

M

|K|dσ ≥ 4π(1 + g),

where K, g and dσ is the Gaussian curvature, the genus and the area element of M ,
respectively.

6. Let M be an n-dimensional compact and simply connnected Riemannian manifold.
If the sectional curvature KM of M satisfies

1

4
< KM ≤ 1,

then M is homeomorphic to Sn.
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S.-T. Yau College Student Mathematics Contests 2018

Algebra and Number Theory
Team

This test has 5 problems and is worth 100 points. Carefully justify your answers.

Problem 1 (20 points). Recall that a ring E is said to be local if for every u ∈ E,
at least one of the elements u and 1− u is invertible. Let R be a ring and let M be
an R-module.

(a) (8 points) Show that if EndR(M) is a local ring, then M is indecomposable.

(b) (12 points) Assume M indecomposable and of finite length. Prove the Fitting
lemma: Every endomorphism u of M is either invertible or nilpotent. Deduce
that EndR(M) is a local ring.

Problem 2 (20 points).

(a) (6 points) Let n ≥ 2 be an integer. Show that there exists an integer m with
1 ≤ m ≤ n− 1 such that the binomial coefficient

(
n
m

)
satisfies

(
n
m

)
≥ 2n/n.

(b) (6 points) Let 0 ≤ m ≤ n be integers with n ≥ 1. Show that for every prime
number p,

vp

((
n

m

))
≤ logp(n)

Here vp is the p-adic valuation: vp(pab) = a for integers b prime to p and a ≥ 0.

(c) (8 points) Let n ≥ 2 be an integer and let π(n) denote the number of prime
numbers p ≤ n. Deduce the following inequality of Chebyshev:

π(n) ≥ n

log2 n
− 1.

Problem 3 (20 points). Let n ≥ 1 be an integer and let Φn(X) ∈ Q[X] denote the
n-th cyclotomic polynomial, i.e.

Φn(X) :=
∏
ξ

(X − ξ),

where ξ runs through primitive n-th roots of unity in C. Recall that Xn − 1 =∏
d|n Φd(X) and Φn(X) belongs to Z[X]. Let p be a prime number such that p - n.

Denote by Φn the residue class of Φn in Fp[X]. Prove the following statements:

(a) (8 points) The roots of Φn = 0 in the algebraic closure Fp of Fp are exactly
the primitive n-th roots of 1 in Fp.

(b) (12 points) Φn is irreducible in Fp[X] if and only if (Z/nZ)× is a cyclic group
generated by the class of p.
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Problem 4 (20 points). Let G be a finite group. Let V be a finite-dimensional
complex representation of G and let χ : V → C be the associated character.

(a) (8 points) Show that there exists a subfield L ⊆ C containing the image of χ
such that L/Q is a finite Galois extension. Show moreover that

B(χ) =
∏

σ∈Gal(L/Q)

∏
g∈G

σ(χ(g))

belongs to Z.

(b) (12 points) Suppose that χ is irreducible and dim(V ) ≥ 2. Show that there
exists g ∈ G with χ(g) = 0. (Hint. One may apply the inequality of arithmetic
and geometric means to |B(χ)|2.)

Problem 5 (20 points). Let F be a field, V an F -vector space of dimension d and
W ⊆ V a subspace. Let f : W → V be an F -linear map. Assume that the only
subspace W ′ ⊆ W such that f(W ′) ⊆ W ′ is {0}.

(a) (6 points) Let v ∈ V be a non-zero vector. Show that there exists a unique
integer k(v) ≥ 0 such that v, f(v), f 2(v), . . . , fk(v)−1(v) ∈ W but fk(v)(v) /∈ W .
Show moreover that v, f(v), . . . , fk(v)(v) are linearly independent over F .

(b) (14 points) Prove that given λ1, . . . , λd ∈ F , there exists an F -linear extension
of f to f̃ : V → V such that the characteristic polynomial of f̃ is ∏d

i=1(λ−λi).
(Hint. You may first treat the special case V = ⊕k(v)

i=0 Ff
i(v). For the general

case, consider the subset Wn ⊆ V of vectors v ∈ V with k(v) ≥ n or v = 0.)
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S.-T. Yau College Student Mathematics Contests 2018

Applied Math. and Computational Math.
Team (5 problems)

1. Let H be a bipartite graph with the bipartition V = V1 ∪ V2, where |V1| = |V2| = n.
We say that H satisfies the (p, q)-condition if (i) for all subsets I ⊆ V1 of cardinality at
most p, the inequality |I| ≤ |N(I)| holds, and (ii) for all subsets J ⊆ V2 of cardinality
at most q, the inequality |J | ≤ |N(J)| holds. Note that the (n, 0)-condition is Hall’s
original condition in his marriage theorem.

Prove that if H satisfies the (p, q)-condition with n ≤ p + q, then H contains a
matching of size n.

2. Let Cn be the n dimensional hypercube, i.e., the graph whose vertex set V is {0, 1}n,
and whose edges are defined by: two vertices u = u1u2 . . . un and v = v1v2 . . . vn are
adjacent iff ui 6= vi for exactly one i ∈ [n]. Let R[V ] be the vector space of all the
functions f : V → R. The space R[V ] has a natural inner product. For f, g ∈ R[V ],

< f, g >=
∑

u∈{0,1}n

f(u)g(u).

The standard basis of R[V ] is the set {fu : u ∈ {0, 1}n} where fu(v) = δu,v, the
Kronecker delta, for u, v ∈ {0, 1}n. Denote by B1 the standard basis.

(1) For any two vertices u, v ∈ {0, 1}n, u · v is defined to be
∑

i uivi. For each
u ∈ {0, 1}n, define a function χu ∈ R[V ] by letting

χu(v) = (−1)u·v.

Prove that the set {χu : u ∈ {0, 1}n} is orthogonal with respect to the inner
product of R[V ], i.e.,

< χu, χv >= δu,v2
n,

for all u, v ∈ {0, 1}n.
(2) Prove that the set {χu : u ∈ {0, 1}n} forms a basis of the vector space R[V ].

Denoted by B2 this basis.
(3) For 1 ≤ i ≤ n, let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}n where the only 1 occurs

in position i. Let S = {e1, e2, . . . , en}.
Define a linear transformation Φ : R[V ] → R[V ] as follows. For f ∈ R[V ],

Φf is the element in R[V ] which is given by

(Φf)(v) =
∑
ei∈S

f(v + ei)

where v + ei is the usual vector addition modulo 2.
Prove that the matrix of Φ with respect to the standard basis B1 is just

A(Cn), the adjacency matrix of the hypercube Cn.
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(4) Prove that Φχu = λuχu for each u ∈ {0, 1}n, where

λu =
∑
e∈S

(−1)u·e = n− 2|u|,

where |u| is the number of 1’s in u = u1u2 . . . un.
(5) Compute the eigenvalues of the matrix A(Cn).

3. Let A ∈ Rn×n, and assume that there are unitary matrix Q and diagonal matrix
D = diag(λ1, · · · , λn) such that A = QDQ∗. Let Ek be the space spanned by the first
k columns of Q. We let

P̂ =

(
Ik

0

)
, P = QP̂Q∗

where Ik is the k × k identity matrix.

(1) Show that P is an orthogonal projection onto Ek.
(2) Assume that

|λ1| ≥ · · · ≥ |λk| > |λk+1| ≥ · · · ≥ |λn|.
Let X(0) ∈ Rn×k and assume PX(0) is injective. We define the iterations

X(m+1) = AX(m).

Show that there is a matrix Λ ∈ Rk×k such that

‖(AX(m) −X(m)Λ)y‖
‖PX(m)y‖ ≤

( |λk+1|
|λk|

)m‖(AX(0) −X(0)Λ)y‖
‖PX(0)y‖ , ∀y ∈ Rk\{0}.

4. For the one-way equation

(1) ut + aux = f,

consider the multistep scheme given by

(2)
3un+1

m − 4un
m + un−1

m

2k
+ a

un+1
m+1 − un+1

m−1

2h
= fn+1

m .

(1) Show that the scheme is second order accurate.
(2) Show that the scheme is unconditionally stable.

(Hint: (i) apply von Neumann analysis to the scheme with f ≡ 0 and find
the characteristic polynomial. (ii) show that for all k, h, the characteristic
polynomial satisfies the root condition: all roots reside in the unit disk, and
all roots on the unit circle are simple. (iii) for a root r of the characteristic
polynomial, it would be more convenient to study the form 1

r
= X + iY and

prove that X2 + Y 2 ≥ 1.)
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5. For a convex function f : D → R, where D ⊆ Rn is convex and open, define a
subgradient of f at x0 ∈ D to be any vector s ∈ Rn such that

f(x)− f(x0) ≥ s · (x− x0)

for all x ∈ D. The subgradient is a plausible choice for generalizing the notion of a
gradient at a point where f is not differentiable. The subdifferential ∂f(x0) is the set
of all subgradients of f at x0.

(1) What is ∂f(0) for the function f(x) = |x|.
(2) Suppose we wish to minimize a convex and continuous function f : Rn →

R, which may not differentiable everywhere. Propose an optimality condition
involving subdifferential for a point x∗ to be a minimizer of f . Show that your
condition holds if and only if x∗ is a globally minimizer f .

(3) The subgradient method extends the gradient descent to a wider class of func-
tions. Analogously to the gradient descent, the subgradient method performs
the iteration

xk+1 = xk − αgk,

where α > 0 is small stepsize that is known as the learning rate, and gk is any
subgradient of f at xk. This method might not decrease f in each iteration, so
instead we keep track of the best iterate we have seen so far, xbest

k .
In the following parts, assume that f is Lipschitz continuous with constant

L > 0, ‖x1 − x∗‖2 ≤ B for some B > 0. Under these assumptions we will show
that

(3) lim
k→∞

f(xbest
k ) ≤ f(x∗) +

L2

2
α,

a bound characterizing convergence of the subgradient method.
(a) Derive an upper bound for the error ‖xk+1 − x∗‖2

2 of xk+1 in terms of
‖xk − x∗‖2

2, gk, α, f(xk) and f(x∗).
(b) By recursively applying the result from Problem 3a, provide an upper

bound for ‖xk+1 − x∗‖2
2.

(c) Incorporate f(xbest
k ) into your upper bound in Problem 3b, and take a limit

as k →∞ to obtain the desired convergence result (3).
(d) Suggest a best choice of the learning rate α.
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