S.-T. Yau College Student Mathematics Contests 2021

Probability and Statistics

Solve every problem.

Part I: Probability

Problem 1. Suppose that a sequence {X,,} of real-valued random variables converges to X in distribution
and there are positive constants r and C such that E|X,,|” < C for all n. Show that

lim E|X,|* = E|X|*
n—0oo

forall0 < s <r.

Solution: X,, — X in distribution if and only if lim, .« E, f(X,,) = Ef(X) for all bounded continuous functions f.
Let M be a fixed large positive number and define

IxI*, |x| < M;

S () = {M x| = M.

Then fj, is a bounded continuous function and 0 < fs(x) T |x|® as M T co. We have
lim B far (Xn) = Efyr (X).

On the other hand,

1 C

0 < E[Xp|* = Efp(Xn) S E[1Xal*; [Xa] = M] < E[1Xa]"; [Xn] 2 M] <

MT-—s r—s

Hence

EfM(Xn) < E|Xn|s < EfM(Xn) + Mr_s.

Lettingn — oo and then M T oo we have lim,,_,, E| X,;|* = E|X|®. In the second limit we use the monotone convergence
theorem.

Problem 2. Let p(x,y) be the (one-step) transition function of a Markov chain on a discrete state space S
and p,(x,y) be the n-step transition function. Show that for any positive integers L and N and any two states

x and y we have
N+L N

D pn(3) < ) palyy).
n=L n=0

Solution: The intuition of this problem is that for counting how many steps the chain starting from x to be at y the
chain needs to spend time to reach y first.

By the Markov property at L we have forn > L,

Pn(x,y) =Py {X, = y} = Expn-r(XL, ).
If the assertion holds for L = 0, then (l =n - L)

N+L

Z Pn(xvy) = Ex
n=L

N
ZPI(XL,)’)
=0

N
< sz(y, y)-
1=0



Thus it is enough to show for the case L = 0. By the strong Markov property at 7y, we have

Ppu(x,y) = Py {Xu = 3. Ty < n} = Ex [pur, (0.3 Ty < ] .

It follows that (I = n —Ty)

N N N-T, N
an(x, y) = ZEx [pn-1, (.): Ty < n| = Ex Z iy, )Ty < N < an(y,y)-
n=0 n=0 1=0 =0

Problem 3. Let {X,} be an independent, identically distributed sequence of random variables with the
symmetric Bernoulli distribution
P{X=1}=P{X=-1}=1.

N

Let S, = Z X; be the partial sum. Show that for all @ > L
i=1

n—oo p

]P{lim &=0}:1.

Solution: Let k be a positive integer. By Markov’s inequality we have

Sa[ 1 —Qka-1) %
PJ|22| > =1 < pGka-DEs, |,
n® n
‘We have
BS, = Y B [Xy Xy X
1<iy,...,ipx <n

Since the sequences are independent and each random variable has mean zero, each expectation is zero unless the

indices i1, is,. . .,iax can be grouped into k pairs of identical indices. The number of such groups is at most (2k)! - n*.
Hence .
pl|S 5 L Crn~ka=k=1),
n® T n| "

Choosing k > 2/(2a — 1) we have 2k — k — 1 > 1. By the Borel-Cantelli lemma, the probability that |S,,|/n% > n™!
happens infinitely often is zero, hence lim, .« S, /n® = 0 with probability one.

Problem 4. Let X" = {Xl- j} be an n X n random matrix whose entries are independent and identically
distributed random variables with the symmetric Bernoulli distribution

P{X=0}=P{X=1}=1.

Let p,, = P{det Xy is odd}. Show that lim p, > 0.
n—oo

Solution: Consider the (algebraic) field Z/2Z = {0, 1} with two elements, so we need det X;, # 0 in Z/2Z, which
means that p,, is the probability that the n rows of the random matrix are independent.

Each row has 2" choices. There are 2" — 1 choices for the first row X; (the zero column is not allowed). The linear
span for the first row has two vectors (the zero vector and X;), and we cannot choose from this linear span, hence the
number of choices for X; is 2" — 2. In general after the first / rows are fixed, the linear span of these rows has 2! vectors,



and we cannot choose X;;; from this linear span, hence the number of choices for X;;; is 2" — 2!, Tt follows that the
total number of choices for the matrix det X" with nonvanishing determinant is

2" -1)-(2"=2)- (2" =2%) ... (2" =27,

The total number of choices for the random matrix X" is (2")" = 27" and the probability distribution is uniform, hence

Pn=ﬁ(1—%)—>ﬁ(l—%)>0.

I=1

Part II: Statistics

Problem 5. You have been asked to help design a randomized trial of a new drug, call it drug A, to be used
in place of the current drug, call it drug B, for a particular medical condition. The budget is fixed to have
1000 patients treated with A and 1000 treated with drug B. The issue is how to do the allocation of patients,
because we have many pre-randomization measurements on each patient, roughly 200, such as blood pressure
recordings, age, sex, and a large collection of genetics measurements. Obviously it is desirable to have the
A group similar to the B group with respect to all pre-treatment covariates and non-linear functions of them
that are expected to influence the effectiveness of the drugs with respect to the outcome variables.

Complete (or simple) randomization does this in expectation, but with many covariates, some covariates will
not be balanced between the A and B groups in any one single randomized allocation. Standard blocking
used in traditional experimental design can force balance on a few covariates, but the designer of drug A
wants to have an experimental design that creates balance on many covariates, and feels that you, as a modern
applied mathematician/statistician, should be able to do this.

Describe a class of methods that achieves this goal where each patient has a positive probability of receiving
drug A and a positive probability of receiving drug B. Provide enough detail that you are describing an
explicit algorithm.

Solution: Let X; denote the covariate vector of unit {, which can include the pre-treatment measurements as well as
their non-linear functions, and let X = (Xi, ... ,Xn)T denote the convariate matrix for all » = 2000 units. Let z; denote
the treatment allocation for unit i, which equals 1 if the unit is assigned to drug A and 0 otherwise, and z € {0,1}"
denote the treatment allocation for all » units.

Let ¢ (X, z) denote a pre-determined covariate balance criterion, which equals 1 if the allocation z is acceptable and
0 otherwise. Moreover, we construct the criterion ¢ such that it is invariant when we switch treatment and control
groups, i.e., ¢ (X,z) = ¢ (X, 1 — z). We then consider the following re-randomization design to randomly allocate the
patients to groups A and B:
(i) Completely randomize the patients to groups A and B, with 1000 patients within each group.

(i) If the balance criterion is satisfied (i.e., ¢ (X,Z) = 1), proceed to step (iii); otherwise, return to step (i)

(iii) Conduct the experiment using the final randomization obtained in step (ii).
Note that under the completely randomized experiment (CRE) with the same number of units assigned to each treatment

group, Z and 1 — Z follows the same distribution. This implies that, under re-randomization described above (i.e., the
CRE with balance criterion ¢,

Z|10X,Z2)=1~1-Z|¢pX,1-Z)=1~1-Z|¢(X,Z)=1.
Thus, under re-randomization, Z and 1 — Z must have the same distribution. Consequently, forany 1 <i < N,
E(Zl |X7¢(X7Z) = 1) = E(l - Zi |X’¢(X’Z) = 1) =1 _]E(Zi |X9¢(X’Z) = 1)’

which immediately implies that E (Z; | X, #(X,Z) = 1) = 0.5. Therefore, under our proposed design, each patient has
a positive probability (i.e., %) to receive either drug A or drug B.



Problem 6. You are given the results of a randomized experiment of two drugs, A and B. The experiment
was not conducted in the usual way, however, but rather by allocating patients by a machine-learning
algorithm under which each patient has a positive probability of receiving A and of receiving B; moreover
the algorithm is completely specified and is built to create better than random balance on the covariates.

(a)
(b)

Can unbiased estimates of the causal effect of drug A versus B be found, and if so, show why.

Can exact small sample, non-parametric inferences for the causal effect in part (a) be derived, based
solely on the randomization distribution of some statistic? For example, can we find exact significance
levels under a sharp null hypothesis? If so, outline how to accomplish this goal.

Solution:

(a)

(b)

Yes. For each patient i, let ¥;(1) and Y;(0) denote the potential outcomes under drug A and drug B, Z;
be the treatment assignment indicator, where Z; = 1 if the patient receives drug A and O otherwise, and
Y; = Z;Y;(1) + (1 — Z;) Y:(0) be the observed outcome.

For each patient i, let ¢; = Pr(Z; = 1) denote the probability of receiving drug A. Then 1 — ¢; is the probability
of receiving drug B for patient i. Because the algorithm for allocating the patients are completely specified and
each patient has a positive probability of receiving A and of receiving B, e; is known for all i and ¢; € (0, 1).
We can construct the following unbiased estimator for the average causal effect of drug A versus B for patients
in the experiment:

1< Z; <& 1-2
P=— ) “Yi-— Yi.
’ n;ei ”;I_Ei

Below we show that 7 is unbiased for the average causal effect 7 = n™! imy (Y(1) = Y;(0)). By definition we
have

1 Z I 1-2

-y 2y -- > —2y(0

n;ei (1) ngl_ei i(0)

1 < E(Z) 1 1-E(Z) 1 e I 1—¢

=— Y Y (H)--)Y —2Y(0)=- > —Y(1)-— Y;(0
H-=>" = > %) "Zl _Yi(0)

n e; n 1-e¢ 1-
i=1 ! i=1 g i=

Therefore, T is unbiased for 7.

Yes. For example we consider the sharp null hypothesis of no treatment effect:
Hy:Y;(1)=Y:(0), i=12,...,n

Let ¢ (Z,Y) denote a general test statistic, based on which we test the null hypothesis Hy.

First, we can impute all the unknown potential outcomes based on the observed data and the null hypothesis Hy.
Specifically, under Hy, Y;(1) = ¥;(0) = 1;, i.e., both potential outcomes are the same as the observed one.

Second, we can know the distribution of the test statistic under the null hypothesis Hy. Because the algorithm
for allocating the patients are completely specified, we know the distribution of the treatment assignment
(i.e., treatment assignment mechanism). Let W denote a random vector following this treatment assignment
mechanism. Under Hy, the test statistic follows the same distribution as

t(W,Wo¥(1)+(1-W)oY(0),

where Y (1) and Y (0) denote the potential outcome vectors for all units, and o denotes element-wise multiplica-
tion.

Third, we can then evaluate the tail probability of the null distribution of the test statistic at its observed value
to get the p-value. Specifically, let

G(c) =Pr{t(W,WoY(1)+(1-W)oY(0) > c}



denote the tail probability of the null distribution. Then the p-value is
p=G((Z,Y)),

which is valid for testing Hy.
Note that, for a general sharp null hypothesis, we can obtain a valid p-value in a similar way.



