
S.-T. Yau College Student Mathematics Contests 2022

Geometry and Topology
Solve every problem.

Problem 1. The topological space 𝑋 is obtained by gluing two tetrahedra as illustrated by the figure. There
is a unique way to glue the faces of one tetrahedron to the other so that the arrows are matched. The resulting
complex has 2 tetrahedra, 4 triangles, 2 edges and 1 vertex.

Show that 𝑋 can not have the homotopy type of a compact manifold without boundary.

Solution: One can calculate the (𝐙-coefficient) simplicial homology to see that 𝐻0(𝑋) = 𝐙, 𝐻1(𝑋) = 𝐙2, 𝐻2(𝑋) = 𝐙/2,
𝐻3(𝑋) = 𝐙. This does not satisfy Poincaré duality, hence the 𝑋 can not have the homotopy type of a compact manifold
without boundary. Or one can notice that 𝑋 has Euler characteristic 1, but a closed odd-dimensional manifold has Euler
characteristic 0.

Problem 2. Suppose (𝑀, ℎ) is a closed (i.e., compact without boundary) Riemannianmanifold, and ℎ is a metric
on𝑀with sec(ℎ) ≤ −1, where sec(ℎ) is the sectional curvature. Suppose Σ is a closedminimal surface with genus
𝑔 in (𝑀, ℎ). Show that

Area(Σ) ≤ 4𝜋(𝑔 − 1).

Remark: Aminimal surface is an immersed surface with constant mean curvature 0.

Solution: For any surface Σ in a Riemannian manifold (𝑀, ℎ), let 𝑥 ∈ Σ, and {𝑒1, 𝑒2, 𝑒3, 𝑒4,… , 𝑒𝑛} be a local orthonormal
frame of 𝑀 at 𝑥 where 𝑒1 and 𝑒2 are tangent to Σ and 𝑒3,… , 𝑒𝑛 are normal to Σ. The Gauss equation shows that

𝜅(𝑥) =𝐾12 + ⟨𝐴11, 𝐴22⟩ − ⟨𝐴12, 𝐴12⟩,

=𝐾12 +
|𝐻|2

2
−
|𝐴|2

2
.

Here, 𝐾12 is the sectional curvature of 𝑇𝑥Σ ⊂ 𝑇𝑀. Integrate this identity over Σ and use the Gauss-Bonnet theorem; we get

2𝜋𝜒(Σ) = ∫
Σ

(𝐾12 +
|𝐻|2

2
−
|𝐴|2

2
) .

Equivalently,

Area(Σ) = 4𝜋(𝑔 − 1) + ∫
Γ

(1 + 𝐾12 +
|𝐻|2

2
−
|𝐴|2

2
) ,

where 𝑔 is the genus of Σ. Σ being minimal implies that 𝐻 = 0, and sec(ℎ) ≤ −1 implies that 𝐾12 ≤ −1. Se we get

Area(Σ) ≤ 4𝜋(𝑔 − 1).



Problem 3. For any topological space 𝑋, the 𝑛-th symmetric product of 𝑋 is the quotient of the Cartesian product
(𝑋)𝑛 by the action of the symmetric group 𝑆𝑛, which permutes the factors in (𝑋)𝑛. This space is denoted by
SP𝑛(𝑋), and the topology is the natural quotient topology induced from (𝑋)𝑛.

Show that SP𝑛(𝐂𝐏1) is homeomorphic to 𝐂𝐏𝑛. Here 𝐂𝐏1 and 𝐂𝐏𝑛 are equipped with the manifold topology.

Solution: 𝐂𝐏𝑛 can be interpreted as the space of homogeneous polynomials in two variables of degree 𝑛modulo multipli-
cation by a non-zero complex constant. Each polynomial is determined up to a constant complex number by its 𝑛 complex
roots on 𝐂𝐏1. On the other hand, SP𝑛(𝐂𝐏1) is exactly the 𝑛-tuples of unordered points in 𝐂𝐏1. This induces a bijection
𝐹 ∶ SP𝑛(𝐂𝐏1) → 𝐂𝐏𝑛.

It remains to show 𝐹 and 𝐹−1 are both continuous. One direction is relatively easy: because the coefficients of the poly-
nomials are determined by the roots via Vieta’s formulas, and Vieta’s formulas are polynomials, 𝐹 is continuous. For the
other direction, notice that SP𝑛(𝐂𝐏1) is compact (because it is the quotient of a compact space), 𝐂𝐏𝑛 is Hausdorff, and 𝐹 is
a continuous bijection, so 𝐹−1 is also a continuous bijection.

Problem 4. Let 𝑀 be a complete noncompact Riemannian manifold. 𝑀 is said to have the geodesic loops to
infinity property if for any [𝛼] ∈ 𝜋1(𝑀) and any compact subset 𝐾 ⊂ 𝑀, there is a geodesic loop 𝛽 ⊂ 𝑀\𝐾, such
that 𝛽 is homotopic to 𝛼.

Show that if a complete noncompactRiemannianmanifold𝑀does not have the geodesic loops to infinity property,
then there is a line in the universal cover 𝑀̃.

Remark: A line is a geodesic 𝛾 ∶ (−∞,∞) → 𝑀 such that dist (𝛾(𝑠), 𝛾(𝑡)) = |𝑠 − 𝑡|; a geodesic loop is a curve
𝛽 ∶ [0, 1] → 𝑀 that is a geodesic and 𝛽(0) = 𝛽(1).

Solution: Suppose [𝛼] ∈ 𝜋1(𝑀) is a loop that𝑀 has no geodesic loops to infinity with respect to 𝛼, 𝐾. Suppose 𝛼 is based
at 𝑥0. Let 𝐾 be a compact subset 𝐾 ⊂ 𝐵𝑅(𝑥0) ⊂ 𝑀. Let us choose 𝑥𝑖 ∈ 𝑀 with dist(𝑥0, 𝑥𝑖) > 𝑅. Minimize curves passing
through 𝑥𝑖 in the homotopy class [𝛼] to get a geodesic loop 𝛾𝑖 that is based at 𝑥𝑖. Because𝑀 has no geodesic loops to infinity
with respect to 𝛼, 𝛾𝑖 intersects with 𝐾; let 𝑦𝑖 ∈ 𝐾 ∩ 𝛾𝑖.

Now we go to the universal cover 𝑀̃, and consider the lift ̃𝛾𝑖 of 𝛾𝑖, such that ̃𝛾𝑖 connects ̃𝑥𝑖 and [𝛼] ̃𝑥𝑖 in the universal cover.
We assume ̃𝑦𝑖 is the lift of 𝑦𝑖 lying on ̃𝛾𝑖. Let us estimate the distance 𝑑𝑖 between ̃𝑦𝑖 and [𝛼]𝑥𝑖. Because ̃𝛾𝑖 is a minimizing
geodesic segment, we have dist( ̃𝑦𝑖, [𝛼] ̃𝑥𝑖) equals to the length of the geodesic line segment ̃𝛾𝑖 from ̃𝑦𝑖 to [𝛼] ̃𝑥𝑖. This is exactly
the length of the part of the geodesic loop that connects 𝑦𝑖 and 𝑥𝑖. By the triangle inequality, 𝑑𝑖 ≥ 𝑚𝑖 − 𝑅. Similarly, the
distance 𝑒𝑖 between ̃𝑦𝑖 and 𝑥𝑖 satisfies the bound 𝑒𝑖 ≥ 𝑚𝑖 − 𝑅.

Therefore, there is a geodesic starting from ̃𝑦𝑖 that extends to both directions with length longer than 𝑚𝑖 − 𝑅. Notice that
𝑦𝑖 ∈ 𝐾, so for any 𝑖, we can choose ̃𝑦𝑖 in some fixed compact domain of 𝑀̃. Then as𝑚𝑖 → ∞, we can pass to a subsequence
of ̃𝑦𝑖 to get a limit ̃𝑦∞, and a line passing through this point.

Problem5. A topological space𝑋 is called anH-space if there exist 𝑒 ∈ 𝑋 and 𝜇 ∶ 𝑋×𝑋 → 𝑋 such that 𝜇(𝑒, 𝑒) = 𝑒

and the maps 𝑥 → 𝜇(𝑒, 𝑥) and 𝑥 → 𝜇(𝑥, 𝑒) are both homotopic to the identity map.

(a) Show that the fundamental group of an H-space is Abelian.

(b) Show that the sphere 𝑆2022 is not an H-space.

Historic Remark: “H” was suggested by Jean-Pierre Serre in recognition of the contributions in Topology by Heinz
Hopf.

Solution:

(a) Let [𝑓] and [𝑔] be two elements in the fundamental group of 𝑋. We may assume 𝑓 ∶ [0, 1] → 𝑋 and 𝑔 ∶ [0, 1] → 𝑋

are both continuous maps with 𝑓(0) = 𝑓(1) = 𝑔(0) = 𝑔(1) = 𝑒.



Now we define a map 𝐹 ∶ [0, 1] × [0, 1] → 𝑋 by 𝐹(𝑥, 𝑦) = 𝜇(𝑓(𝑥), 𝑔(𝑦)). Then 𝐹(⋅, 0) is homotopic to 𝑓 and 𝐹(0, ⋅) is
homotopic to 𝑔. It is clear that

ℎ(𝑠, 𝑡) = {
𝐹((1 − 𝑡)2𝑠, 𝑡 ⋅ 2𝑠) 𝑠 ∈ [0, 1

2
],

𝐹 (𝑡 ⋅ 2(𝑠 − 1
2
), (1 − 𝑡) ⋅ 2(𝑠 − 1

2
)) 𝑠 ∈ [ 1

2
, 1]

is a homotopy from a curve representing [𝑓] ⋅ [𝑔] to a curve representing [𝑔] ⋅ [𝑓]. Therefore [𝑓] ⋅ [𝑔] = [𝑔] ⋅ [𝑓], and
hence 𝜋1(𝑋) is Abelian.

(b) We will show that 𝑆2𝑛 is not a H-space. In the following we consider 𝐑-coefficient cohomology. Suppose 𝑆𝑘 is an
H-space, then the map 𝜇 induces

𝜇∗ ∶ 𝐻∗(𝑆𝑘) → 𝐻∗(𝑆𝑘) ⊗ 𝐻∗(𝑆𝑘),

and for a generator 𝑥 ∈ 𝐻𝑘(𝑆𝑘), 𝜇∗(𝑥) = 1⊗𝑥+𝑥⊗1 (to see this, one can consider the composition𝑋 ↪ 𝑋×𝑋
𝜇
−→ 𝑋,

where the inclusion is 𝑎 → (𝑎, 𝑒) or 𝑎 → (𝑒, 𝑎)).

The universality of the cup product gives

𝜇∗(𝑥 ∪ 𝑥) = (1 ⊗ 𝑥 + 𝑥 ⊗ 1) ∪ (1 ⊗ 𝑥 + 𝑥 ⊗ 1).

The left hand side is clearly 0, and the right hand side is (1 + (−1)𝑘
2
)𝑥 ⊗ 𝑥. Here, notice that (𝑎 ⊗ 𝑏) ∪ (𝑐 ⊗ 𝑑) =

(−1)| deg(𝑏)|| deg(𝑐)|(𝑎 ∪ 𝑐) ⊗ (𝑏 ∪ 𝑑). Thus, 𝑆𝑘 being an H-space implies that 𝑘 is odd.

Remark: In fact, Adams’ Hopf invariant one theorem shows that among all the spheres, only 𝑆0, 𝑆1, 𝑆3, 𝑆7 are H-
spaces.

Problem 6. A hypersurface Σ ⊂ 𝐑𝐧+𝟏 is called a shrinker if it satisfies the equation

𝐻(𝑥) = 1
2
⟨𝑥, ⃗𝑛⟩.

Here𝐻 is themean curvature, which is−⟨tr𝐴, ⃗𝑛⟩where𝐴 is the second fundamental form, 𝑥 is the position vector,
and ⃗𝑛 is outer unit normal vector.

(a) Show that 𝑆𝑛(√2𝑛), the sphere with radius√2𝑛, is a shrinker.

(b) Show that any compact shrinker without boundary must intersect with 𝑆𝑛(√2𝑛).

Solution:

(a) One can calculate that for 𝑆𝑛(√2𝑛), 𝐴 = −
1

√2𝑛
𝑔 ⃗𝑛, hence 𝐻 =

𝑛

√2𝑛
. Also, 𝑥 = √2𝑛 ⃗𝑛, so 𝑆𝑛(√2𝑛) satisfies the

shrinker’s equation.

(b) Suppose Σ is a closed shrinker. On any hypersurface, ∇Σ𝑥 = 𝐼, where 𝐼 is the (𝑛 + 1) × (𝑛 + 1) matrix that is the
identity on 𝑇𝑥Σ ⊗ 𝑇𝑥Σ and vanishes elsewhere, ΔΣ𝑥 = −𝐻 ⃗𝑛, so

ΔΣ|𝑥|
2 = 2⟨∇Σ𝑥,∇Σ𝑥⟩ + 2⟨ΔΣ𝑥, 𝑥⟩ = 2𝑛 − 2⟨𝑥, ⃗𝑛⟩2.

Consider 𝑥max such that |𝑥|2 attains themaximum, and 𝑥min such that |𝑥|2 attains theminimum. First let us consider
𝑥min ≠ 0. Differentiating |𝑥|2 shows that 𝑥max and 𝑥min are normal to the tangent hyperplane, and ⟨𝑥⋅, ⃗𝑛⟩2 = |𝑥⋅|

2 for
⋅ = max or ⋅ = min. Then ΔΣ|𝑥|2 ≤ 0 at 𝑥max, hence 2𝑛 − ⟨𝑥max, ⃗𝑛⟩2 ≤ 0. This implies that |𝑥max|2 ≥ 2𝑛. Similarly,
ΔΣ|𝑥|

2 ≥ 0 at 𝑥min, and |𝑥min|2 ≤ 2𝑛. Finally, if 𝑥min = 0, then it is clear |𝑥min|2 ≤ 2𝑛. Therefore Σ must intersect
𝑆𝑛(√2𝑛).


